Turnitin Originality Report
PNSC530 by Suryadi Ismadji
From paper 2 (Hippo-hippo 02)
Processed on 16-Feb-2018 14:43 WIB
ID: 916900748
Word Count: 5614

Similarity Index
15%

Similarity by Source
Internet Sources: 13%
Publications: 10%
Student Papers: 7%

sources:

1. 2% match (student papers from 05-Dec-2013)
 Submitted to Queen Mary and Westfield College on 2013-12-05
 http://studentsrepo.um.edu.my/6705/1/Preparation_of_polypyrrole_nanocomposites_for_high%2Dperformance_supercapacitor_electrode

2. 1% match (Internet from 07-Sep-2017)
 http://oriprobe.com/journals/zrkxjz-e/2012_6.html

3. 1% match (Internet from 21-Aug-2016)

4. 1% match (Internet from 04-Oct-2016)
 http://studentsrepo.um.edu.my/6705/1/Preparation_of_polypyrrole_nanocomposites_for_high%2Dperformance_supercapacitor_electrode

5. 1% match (Internet from 21-Aug-2016)
 http://oriprobe.com/journals/zrkxjz-e/2012_6.html

6. 1% match (publications)
 Chandra, T.C.. "Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics", Chemical Engineering Journal, 20070301

7. 1% match (publications)

8. 1% match (Internet from 06-Nov-2015)
 http://www.posmi.net/ch/reader/create_pdf.aspx?
file_no=20130301&flag=1&journal_id=zrkxjz&year_id=2013

9. 1% match (Internet from 06-Nov-2015)
 http://www.posmi.net/ch/reader/create_pdf.aspx?
file_no=20130301&flag=1&journal_id=zrkxjz&year_id=2013

10. 1% match (Internet from 03-Mar-2017)

11. 1% match (Internet from 28-Nov-2017)
 https://research.aalto.fi/files/11774233/1_s2.0_S1002007112001396_main.pdf

12. 1% match (publications)

13. < 1% match (Internet from 30-Aug-2017)
 site=preview-nanoscalereslett.springeropen.com

14. < 1% match (publications)

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=15&oid=916900748&sid=0&n=0&m=0&svr=329&r=8.712773178031652&lang=e… 1/10
15 < 1% match (Internet from 28-Dec-2017)

16 < 1% match (publications)

17 < 1% match (publications)

18 < 1% match (student papers from 27-Jun-2013)
Submitted to Universiti Teknikal Malaysia Melaka on 2013-06-27

19 < 1% match (Internet from 11-Aug-2017)

20 < 1% match (publications)

21 < 1% match (publications)
Shim, J.-W. "Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers". Carbon, 200109

22 < 1% match (student papers from 25-Nov-2014)
Submitted to King Saud University on 2014-11-25

23 < 1% match (Internet from 07-Feb-2014)
http://www.jese-online.org/Articles/Vol_03/No_2/Pdf/jESE_Vol3_No2_p37-89_2013.pdf

24 < 1% match (Internet from 15-Feb-2018)

25 < 1% match (Internet from 31-Oct-2017)

Paper text:

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright

A facile and green preparation of durian shell-derived carbon electrodes for electrochemical double-layer capacitors L.K. Onga, A. Kurniawan, A.C. Suwandi, C.X. Lin, X.S. Zhao

A facile and green preparation of high surface area activated carbons with mixed microporosity and mesoporosity from durian shell waste is reported in this work. The pore structure and surface chemistry of the parent carbon were modified by the combination of ultrasonication and microwave irradiation techniques. The effects of temperature and time in the ultrasonication treatment and power output and time in the microwave irradiation were studied. The electrochemical performance of carbon electrodes for supercapacitors was tested by cyclic voltammeter (CV) and galvanostatic charge–discharge. The results show that the capacitive energy storage of electrodes is critically dependent on the microporosity and surface chemistry of activated carbons. The highest electrode capacitance in this work was 103.6 F/g that prepared from activated carbon modified at an ultrasonication temperature of 323.15 K for 10 min and microwave power output of 900 W for 10 min.

Peer review under responsibility of Chinese Materials Research Society. Production and hosting by Elsevier Ltd. All rights reserved.

E-mail addresses:

8george.zhao@uq.edu.au (X.S. Zhao), suryadiismadji@yahoo.com

Authors contributed equally to this work.

1These authors contributed equally to this work.

626 L.K. Ong et al. 1. Introduction Supercapacitors, also known as electrochemical double-layer capacitors (EDLCs) are an energy storage device that can be used to store and release energy.
Compared to commercial rechargeable batteries, EDLCs have a better delivery (charge–discharge) performance and longer cycle life [1–2]. The applications of EDLCs are mainly found as high power energy storage devices in the fields that need an ever-decreasing size such as electronic and military devices, space flight technology, automotive and public transports, and low-power equipment such as portable media players, game consoles, photographic flashes, and printers [3]. The disc-type EDLCs are fabricated by sandwiching a thin sheet or separator (e.g., polymers) with two round-shaped electrodes. For the roll-type EDLCs, the electrode foils and separators are rolled up together to make a roll-to-roll structure. Although the latter is more favorable for applications in devices, the disc-type EDLCs are actually more resistant to physical changes during capacitance measurement (e.g., swelling of the porous carbon layers) and more suitable for long term tests [4]. In addition, the disc-type is closer to the intended products (EDLCs) in terms of its design and structure. While many materials have been developed as electrodes for EDLCs, such as graphene [5], carbon nanotubes (CNTs) [6], conducting polymers [7], metal oxides [8], carbon aerogels [9], and activated carbons [10–14], the activated carbon is the mostly used porous materials for EDLCs because of its benefits such as high surface area and chemical stability, wide availability, simpler and low cost preparation methods compared to other carbon-based materials such as carbon nanotubes, carbon aerogel, and graphene. Numerous studies have been conducted to explore the electrochemical performance of activated carbon-based electrodes for EDLCs [10–15]. It has been reported that the capacitance of electrode critically depends on the pore structure and surface chemistry of activated carbon [16–21]. To improve its electro-chemical performance, activated carbons must be modified with proper activation methods. The most extensively used methods is through one-step or two-step chemical and/or physical (thermal) activations using various modifiers such as ZnCl2, H3PO4, KOH, K2CO3, CO2, or steam [15,18,19,22,23]. However, such conventional processes are energy-intensive in conjunction with high temperature carbonization process (mostly conducted at above 700 °C) and often cause environmental issues due to the generation of wastewater containing toxic chemicals. Lately, microwave irradiation has become a fast emerging technique for surface modification of activated carbons. This technique has attracted many attentions because of reducing modification time and energy consumption compared to conventional methods [19,20]. It is known that microwave energy can vibrate polar molecules (e.g. water and some organic matters) in the carbon matrices and the generated heat triggers molecular evaporation of such molecules. Such phenomena lead to the tunneling and development of porosity in the carbon matrices. Microwave energy can also activate the surface carbon atoms to initiate the reactions with surrounding chemical(s), resulting in the modification of surface chemistry [21]. In addition, the burn loss of carbon in the process can be minimized. The objectives of this work are to prepare high surface area activated carbons from durian shell waste and develop high performance carbon electrodes for supercapacitors. The activated carbons were prepared by carbonization process, followed by surface modification via ultrasonication and microwave irradiation using water as the modifying agent. To date, there is no report on the preparation and modification processes of activated carbons by combination of such techniques using the green chemical (water). The effects of temperature and time in the ultrasonication treatment and power output and time in the microwave irradiation towards the pore structure and surface chemistry of the carbon
were discussed. To this end, the capacitance and delivery performance of durian shell-derived carbon electrodes for supercapacitors was tested by cyclic voltammetry (CV) and galvanostatic charge–discharge.

2. Materials and methods

2.1. Materials

Analytical grade polyvinylidene difluoride (PVdF) was purchased from Sigma Aldrich, Singapore. Nickel foam substrate (30 cm in length 8 cm in width 0.008 cm in thickness, purity 499.9%) was obtained from MTI Corp., China. Durian shell was obtained from a local supermarket in Surabaya, East Java, Indonesia. After the collection, the shell was cut into a size of 1 cm² and repeatedly washed with tap water to remove surface dirt and other insoluble materials. The shell was then dried in an oven at 373.15 K for 24 h and crushed with an IKA Labortechnick grinder to obtain particle size of 0.18–0.25 mm (60/80 mesh).

Finally, the product was kept in the desiccators for further use. The proximate analysis of durian shell was performed based on the ASTM E870-82 method and the results are given as follows: moisture content (MC) of 5.42%, volatile matters (VM) of 69.73%, ash of 2.21%, and fixed carbon (FC) of 22.64%. The compositions of durian shell, as determined by a Perkin–Elmer 2400 CHNS/O elemental analyzer, were found as follows: C ¼ 60.48%, H ¼ 3.11%, N ¼ 8.53%, S ¼ 0.1% and O ¼ 27.78% (measured by difference). High carbon content in durian shell denotes the suitability of this biomass waste to be utilized as a precursor of activated carbon.

2.2. Preparation of activated carbons

The carbonization process of durian shell was performed in a batch pyrolysis reactor. The reactor was custom-made by a local manufacturer from 316 grade stainless steel with a maximum working temperature of 1,273.15 K at atmospheric pressure. The reactor was connected to a gas cylinder containing nitrogen with purity of 99.9%. Prior to heating, nitrogen was flowed to the system to remove air. One hundred grams of durian shell was loaded into the reactor and heated at a rate of 10 K/min from room temperature (around 303.15 K) to 1,023.15 K. The process was conducted for 3 h under nitrogen flow at a flow rate of 2 L/min. After carbonization, the system was cooled down to room temperature under a flow of N2. The resulted char was removed from the reactor and kept in the desiccators. The surface modification of untreated char was described as follows: 10 g of char was mixed with distilled water at a mass/volume ratio of 1:2 in plastic wrapped test tubes. The mixture was then sonicated in a Wiseclean WUC-A03H ultrasonic 2 A facile and green preparation of durian shell-derived carbon electrodes for electrochemical double-layer capacitors 627 water-bath at 40 KHz at various temperatures (303.15 K, 313.15 K, and 323.15 K) for 10 min, 20 min, and 30 min. The suspension was then placed in a microwave oven (Inex-iron WDS900DSL23-2) and irradiated at various power outputs (540 W, 720 W, and 900 W) for a certain period of time (5 min, 8 min, and 10 min). The modified carbons were then cooled to room temperature and dried in an oven at 373.15 K for 24 h. The resulted samples were labeled as follows: the first and the second terms refer to ultrasonication temperature and time, respectively while the third and the fourth refer to microwave power output and heating time, respectively. For example, activated carbon modified by ultrasonication at 323.15 K for 10 min and microwave irradiation at 900 W for 10 min was labeled as AC-323.15/10/900/10. 2.3. Pore structure and surface morphology characterizations
of activated carbons was characterized by physical adsorption of nitrogen, in an automatic Micromeritics ASAP-2010 volumetric sorption analyzer at 77.15 K over a relative pressure (p/p₀) range from approximately 10⁻⁵ - 0.995. The specific surface area (SBET), micropore volume (Vmic), and micropore surface area (Smic) of the samples were determined by means of Brunauer–Emmett–Teller (BET) and Dubinin–Asthakov (DA) methods. The pore size distributions (PSDs) of the samples were obtained from gas adsorption isotherm data by density functional theory (DFT) model available within the instrument with medium level of software regularization. The surface morphology of untreated and modified activated carbons was visualized in a field emission scanning electron microscope JEOL JSM-6300F. Prior to analysis, the samples were coated with a thin layer of platinum to make them electronically conductive, using an Eiko IB-5 sputter–coater operated at 6 mA for 3 min in argon atmosphere. The coated samples were then placed in the SEM specimen chamber and scanned at an accelerating voltage of 10 kV, spot size of 8, aperture of 4, and working distance of 9 mm. 2.4. Surface chemistry characterizations The surface chemistry of untreated and modified activated carbons was characterized by the Boehm titration method [24]. FTIR analysis was also performed to identify the presence of carbon–oxygen surface groups and probe their alterations before and after modifications. The analysis was conducted in a Shimadzu FTIR-8400S spectrophotometer based on the KBr disk procedure with cumulative scans of 200. The spectra data of the samples were recorded in a wavenumber range from 4000 cm⁻¹ to 500 cm⁻¹. 2.5. Preparation of carbon electrodes The carbon electrodes were prepared by mixing activated carbon with PVdF as a binder and ethanol as a solvent with mass ratio of 8:1:1. The mixture was then pressed into a circular nickel foam substrate (1.3 cm i.d.) at 20 MPa and dried in a Lab-Line Duo-Vac oven at 353.15 K. The disc-type EDLCs were fabricated by placing a thin polypropylene film between the electrodes and pressed in a stainless steel cell at 100 MPa. 2.6. Electrochemical measurements The electrochemical performance of the electrodes was tested by cyclic voltammetry (CV) in a potential range from ±0 V to ±1 V at a scan rate of 30 mV/s and galvanostatic charge–discharge.
using an electrochemical workstation (Model 660D, CH Instruments Inc.). The electrolyte solution used in the electrochemical cell was 1 M H2SO4. The gravimetric specific capacitance of the electrodes was calculated by

\[C = \frac{4I_dD_t}{mDU} \]

where \(I_d \) is the discharge current (A), \(D_t \) is the discharge time (s), \(DU \) is the potential difference of the electrodes during discharge (V), \(m \) is the total mass of activated carbon in both electrodes (g), and \(C \) is the specific capacitance of the electrodes (F/g). 3. Results and discussion 3.1. Pore structure of activated carbons Generally speaking about materials science specifically activated carbon, the pore structure is the main aspect featuring various properties of carbon-based materials such as electro-chemical, adsorptive, catalytic, etc. With regard to electro-chemical properties, activated carbons with a tunable micropore/mesopore ratio are desirable for the fabrication of high performance supercapacitors in wide range of uses from low to high current density [1,25,26].

Fig. 1 depicts the nitrogen adsorption–desorption isotherms of untreated and modified carbons at 77.15 K. It can be seen that both untreated and modified carbons exhibit Type-II isotherm shape according to IUPAC classifications. Such isotherm was characterized by an inflection in the \(\frac{p}{p_0} \) region above 0.1 after micropores filling, followed by gradual and then a rapid increase in the adsorption extents near saturation point, i.e. at \(\frac{p}{p_0} \) above 0.9. This may reveal an adsorption phenomenon of gas onto solids with mixed microporosity and mesoporosity. It was also noted that the gradient of N2 adsorption–desorption curves in the \(\frac{p}{p_0} \) region from 0.1 to 0.9 for AC-313.15/20/720/8 and AC-323.15/10/900/10 carbons was steeper than untreated carbon. This may denote that more pores (typically mesopores) were evolved on the carbon surface after modification process, resulting in higher adsorption capacity of N2. The specific surface area (SBET), total pore volume (VT), and micropore volume (Vmic) of untreated and modified carbon samples are listed in Table 1. The mixed characteristic of microporosity and mesoporosity on the carbon surface also proved from the DFT results (Fig. 2). Several narrow peaks were appeared at pore size range from 10 Å to 20 Å, which is the micropore zone and broad peaks at pore size range from 50 Å to 450 Å, which is the mesopore zone. The SEM micrographs of untreated and modified carbons at two magnifications of 5000 and 10,000 are displayed in Fig. 3. It was found that the surface of modified carbons (Fig. 3B and C) was uneven with significant amount of aggregated particles, which did not exist on the untreated sample (Fig. 3A). This observation indicates that the ultrasonic and microwave treatment lead to the aggregation of carbon particles that create higher surface area and pore volume as supported by the N2 sorption analysis listed in Table 1.

Based on the experimental results (Table 1), it can be seen that the combination of ultrasonication and microwave treatments can significantly increase the carbon surface area. The BET surface area of untreated carbon increases almost 2-fold from 352.41 m²/g to 648.64 m²/g after ultrasonication treatment at 303 K for 20 min and microwave irradiation at 720 W for 8 min. It was found that the effects of temperature and time in ultrasonication treatment may not be significant in increasing the BET surface area of the carbon. For example, the BET surface area between AC-313.15/20/720/8 and AC-323.15/20/720/8 was slightly different (645.39 m²/g vs. 651.82 m²/g) by ultrasonication at 313.15 K and 323.15 K (other conditions were unchanged). However, increasing ultrasonication temperature would enhance the diffusion rate of water into the carbon matrices thus more amounts of water were entrapped. During microwave irradiation, the entrapped waters were evaporated, leading to the tunneling and development of porosity that increase the surface area and total pore volume of the carbon. In contrast, extending ultrasonication time would decrease the surface area and total pore volume of the carbon due to partial blockades of internal pore accesses by ultrasound vibration,
Surface chemistry of activated carbons The electrochemical performance of carbon-based electrode materials also strongly depends on the carbon chem-istry, associated with the carbon–oxygen surface groups.

Table 1 Pore characteristics of untreated and modified activated carbons

<table>
<thead>
<tr>
<th>Carbon</th>
<th>Smic/SBET (%)</th>
<th>Vmic/VT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-303.15/20/720/8</td>
<td>71.16%</td>
<td>68.63%</td>
</tr>
<tr>
<td>AC-313.15/20/720/8</td>
<td>72.22%</td>
<td>74.23%</td>
</tr>
<tr>
<td>AC-313.15/20/540/8</td>
<td>74.23%</td>
<td>71.16%</td>
</tr>
<tr>
<td>AC-313.15/20/900/8</td>
<td>74.23%</td>
<td>71.16%</td>
</tr>
<tr>
<td>AC-313.15/20/720/5</td>
<td>74.23%</td>
<td>71.16%</td>
</tr>
<tr>
<td>AC-313.15/20/720/10</td>
<td>74.23%</td>
<td>71.16%</td>
</tr>
<tr>
<td>AC-323.15/10/900/10</td>
<td>74.23%</td>
<td>71.16%</td>
</tr>
</tbody>
</table>

Table 2 Surface acidity and basicity of untreated and modified activated carbons

<table>
<thead>
<tr>
<th>Carbon</th>
<th>Acidic Groups</th>
<th>Basic Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-303.15/20/720/8</td>
<td>Carboxylic</td>
<td>Phenolic</td>
</tr>
<tr>
<td>AC-313.15/20/720/8</td>
<td>Lactone</td>
<td>Total</td>
</tr>
<tr>
<td>AC-313.15/20/540/8</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>AC-313.15/20/900/8</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>AC-313.15/20/720/5</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>AC-313.15/20/720/10</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>AC-323.15/10/900/10</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Surface chemistry of activated carbons

The electrochemical performance of carbon-based electrode materials also strongly depends on the carbon chemistry, associated with the carbon–oxygen surface groups.
Electrochemical performance of carbon electrodes The cyclic voltammogram and galvanostatic charge–discharge of several carbon electrodes are depicted in Figs. 4 and 5. Fig. 4 indicates that the current density of untreated and modified carbon electrodes in H2SO4 solution are fairly stable at potential ranging from 0 V to 1 V. The symmetrical rectangular shape of combined curves at positive and negative sweep rates was observed and reveals the current stability of the electrodes during charge and discharge [16]. The voltammogram curve areas for AC-323.15/10/900/10 and AC-313.15/20/900/8 electrodes were broader than the untreated sample, which may be ascribed to higher capacitance of these electro- des. The profiles of cyclic galvanostatic charge–discharge (Fig. 5) support the stability performance of electrodes over 630 L.K. Ong et al. Fig. 4 Cyclic voltammograms of untreated and modified carbon electrodes. Fig. 5 Galvanostatic charge–discharge curves of untreated and modified carbon electrodes. potential range studied. In this figure, an isosceles triangle shape was shown in all charge–discharge curves which denote high efficiency electrodes with low internal resistance and potential drop [16]. The capacitance of electrodes prepared from different carbon samples is presented in Table 3. As expected, the capacitance of electrodes prepared from modified carbons was higher than the untreated carbon. In order to investigate the role of microporosity and surface chemistry of the carbon towards the electrode capacitance, we compare the capacitive energy storage of AC-313.15/20/720/8, AC-323.15/20/720/8, and AC-313.15/20/900/8 electrodes. These electrodes were selected as the model to study the importance of ultrasonica- tion and microwave irradiation in conjunction with the aforesaid factors. It was found that the capacitance of electrodes was increased with increasing carbon microporos- ity, from 60.8 F/g of untreated (Smic ¼ 271.24 m2/g) to 94.7 F/g AC-313.15/20/720/8 (Smic ¼ 466.10 m2/g), 99.7 F/g of AC-323.15/20/720/8 (Smic ¼ 476.55 m2/g), and 98.9 F/g of AC-313.15/20/900/8 (Smic ¼ 500.47 m2/g). However, it should be noteworthy that the capacitance of electrode does not solely depends on the carbon microporosity. For example, the capaci- tance of AC-313.15/30/720/8 was lower than AC-313.15/20/720/5 Table 3 The specific capacitance untreated and modified activated carbon electrodes. Carbon samples C (F/g) Untreated AC-303.15/20/720/8 AC-313.15/10/720/8 AC- 323.15/20/720/8 AC-313.15/20/720/8 AC-313.15/20/720/5 AC-313.15/20/720/10 AC-323.15/10/900/10 AC- 313.15/20/900/8 AC-313.15/20/720/8 AC-313.15/20/720/10 AC-313.15/20/900/8 AC-313.15/20/720/5 AC-313.15/20/720/10 AC-323.15/10/900/10 60.8 94.8 95.8 99.7 94.7 90.9 87.3 99.9 91.5 96.6 103.6 (90.9 F/g vs. 91.5 F/g) although its micropore surface area was higher than the latter (456.63 m2/g vs. 447.32 m2/g). This result may confirm the synergistic effects between microporosity and carbon surface chemistry in improving the electrochemical performance of electrodes. Similar results were also found in several works [16,29,30]. The electrodes prepared from AC-313.15/20/900/8 and AC-323.15/10/900/10 carbons (Fig. 5) have longer charge–discharge time than untreated sample (32.5 min vs. 15.3 min and 39 min vs. 15.3 min). This is due to higher surface area and surface polarity in modified carbons that facilitate the interaction between carbon surface and the electro- lyte solution, which are responsible for higher energy storage capacity and lower internal resistance for the electrolyte ion movement. The highest capacitance of carbon electrodes in this work was 103.6 F/g that was prepared from AC-323.15/10/900/10 carbon. This value was 70% higher than the capacitance of untreated carbon electrodes (60.8 F/g). 4. Conclusions The preparation of high surface area activated carbons with mixed microporosity and mesoporosity from durian shell waste has been demonstrated in this work. The combination of ultrasonication and microwave irradiation techniques using water as the modifying agent was found to be an efficient and effective way to increase the surface area and surface polarity of activated carbons. The electrochemical performance of durian shell-derived carbon electrodes was tested by cyclic voltammeter and galvano- static charge–discharge. The results show that both untreated and modified carbon electrodes show good current stability over potential range from 0 V to 1 V. The profiles of cyclic galvanostatic charge–discharge curves denote high efficiency and low potential drop electrodes with longer charge–discharge time for the electrodes prepared from modified carbons. The highest capacitance of carbon electrodes in this work was 103.6 F/g that prepared from AC-323.15/10/900/10, i.e. activated carbon mod- ified at an ultrasonication temperature of 323.15 K for 10 min and microwave power output of 900 W for 10 min. Acknowledgments The Australian Research Council (ARC) is acknowledged for financial support under the ARC Future Fellow Program (FT100100879). A facile and green preparation of durian shell-derived carbon electrodes for electrochemical double-layer capacitors