RESEARCH PROJECT

BENTONITE-ALGINATE POLYMER NANOCOMPOSITE FOR THE REMOVAL OF WATER-SOLUBLE CATIONIC DYE

Submitted by:

Rizka Fabryanty
NRP. 5203014033

Chrissila Valencia
NRP. 5203014035

DEPARTMENT OF CHEMICAL ENGINEERING

FACULTY OF ENGINEERING

WIDYA MANDALA CATHOLIC UNIVERSITY

SURABAYA

2017
LETTER OF APPROVAL

Seminar of RESEARCH PROJECT for student with identity below:

Name : Rizka Fabryanty
NRP : 5203014033

has been conducted on May 22nd 2017, therefore for student has fulfilled one of several requirements for Bachelor of Engineering degree in Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University Surabaya.

Surabaya, 02 June 2017

Principal Supervisor

Co-Supervisor

Suryadi Ismadji, Ph.D
NIK. 521.93.0198

Felycia E. Soetaredjo, Ph.D
NIK. 521.99.0391

Chairman

Secretary

Sandy Budi Hartono, Ph.D
NIK. 521.99.0401

Suryadi Ismadji, Ph.D
NIK. 521.93.0198

Committees

Member

Member

Dra. Adriana A. A., M.Si.
NIK. 521.03.0563

Felycia E. S., Ph.D
NIK. 521.99.0391

Ery S.R., ST., MT
NIK. 521.98.0348

Member

Authorized by

Dean of Engineering Faculty

Head of Chemical Engineering Department

Suryadi Ismadji, Ph.D
NIK. 521.93.0198

Sandy Budi Hartono, Ph.D
NIK. 521.99.0401
LETTER OF APPROVAL

Seminar of RESEARCH PROJECT for student with identity below:
Name : Chrissila Valencia
NRP : 5203014035

has been conducted on May 22nd 2017, therefore for student has fulfilled
one of several requirements for Bachelor of Engineering degree in
Chemical Engineering Department, Faculty of Engineering, Widya
Mandala Surabaya Catholic University Surabaya.

Surabaya, 02 June 2017

Principal Supervisor
Survadi Ismadji, Ph.D
NIK. 521.93.0198

Co-Supervisor
Felcyna E. Soetaredjo, Ph.D
NIK. 521.99.0391

Chairman
Sandy Budi Hartono, Ph.D
NIK. 521.99.0401

Committees

Secretary
Survadi Ismadji, Ph.D
NIK. 521.93.0198

Member
Dra. Adriana A. A. M.Si.
NIK. 521.03.0563

Member
Fellycia E. S., Ph.D
NIK. 521.99.0391

Member
Ery S.R., ST., MT
NIK. 521.98.0348

Authorized by

Dean of Engineering Faculty
Survadi Ismadji, Ph.D
NIK. 521.93.0198

Head of Chemical Engineering Department
Sandy Budi Hartono, Ph.D
NIK. 521.99.0401
COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Catholic University Surabaya:
Name : Rizka Fabryanty
NRP : 5203014033
agree to transfer the copyright of my research project:
Title: **Bentonite-Alginate Polymer Nanocomposite for the Removal of Water-Soluble Cationic Dye**
to be published in internet or other media (Digital Library of Widya Mandala Catholic University Surabaya) for academic purposes according to copyright law in Indonesia.

Surabaya, May 22nd 2017

Author
Rizka Fabryanty
NRP. 5203014033
COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Catholic University Surabaya:
Name : Chrissila Valencia
NRP : 5203014033
agree to transfer the copyright of my research project:
Title: Bentonite-Alginate Polymer Nanocomposite for the Removal of Water-Soluble Cationic Dye
to be published in internet or other media (Digital Library of Widya Mandala Catholic University Surabaya) for academic purposes according to copyright law in Indonesia.

Surabaya, May 22nd 2017

Author
Chrissila Valencia
NRP. 5203014035
LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to others. I aware and accept the consequences that this research cannot be used as a requirement to obtain Bachelor of Engineering degree.

Surabaya, May 22nd 2017
Student,

Rizka Fabryanty
NRP. 5203014033
LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to others. I aware and accept the consequences that this research cannot be used as a requirement to obtain Bachelor of Engineering degree.

Surabaya, May 22nd 2017
Student,

Chrissila Valencia
NRP. 5203014035
CONTENTS

LETTER OF APPROVAL ... ii
COPY RIGHT AGREEMENT .. iv
LETTER OF DECLARATION .. vi
CONTENTS .. viii
LIST OF FIGURES ... x
LIST OF TABLES ... xii
PREFACE ... xiii
ABSTRACT ... xv

CHAPTER I INTRODUCTION .. 1
 I.1. Background .. 1
 I.2. Research of Objectives ... 2
 I.3. Problem Limitations ... 2

CHAPTER II LITERATURE REVIEW .. 3
 II.1. Adsorption .. 5
 II.1.1 Crystal Violet .. 6
 II.2. Adsorbent ... 7
 II.2.1 Bentonite .. 8
 II.2.2 Alginate .. 8
 II.3 Nanocomposite Preparation Method 9
 II.4 Isotherm Adsorption ... 11
 II.4.1 Freundlich Isotherm .. 12
 II.4.2 Langmuir Isotherm .. 12
 II.5 Kinetic Adsorption ... 13

CHAPTER III RESEARCH METHODOLOGY 16
 III.1 Materials ... 16
 III.2 Instruments ... 17
 III.3 Variables ... 17
 III.3.1 Fixed Variables ... 17
 III.3.2 Manipulated Variables ... 17
 III.4 Research Methodology ... 18
 III.4.1 Bentonite preparation (Pre-treatment Bentonite) 18
 III.4.2 Preparation Bentonite-Alginate Nanocomposite 19
 III.4.3 Isotherm Adsorption ... 21
LIST OF FIGURES

Figure II.1 Adsorption Process ... 6
Figure II.2 Chemical Structure of Crystal Violet 6
Figure II.3 Structure of Bentonite ... 8
Figure II.4 Chemical Structure of Alginate ... 9
Figure II.5 Iontropic Gelation Method .. 10
Figure III.1 Scheme of Bentonite preparation 18
Figure III.2 Scheme of Bentonite-Alginate Preparation Composite 20
Figure III.3 Scheme of Isotherm Adsorption Mechanism 21
Figure III.4 Scheme of Kinetic Adsorption ... 22
Figure IV.1 FT-IR Spectra of adsorbent ... 26
Figure IV.2 The Protonation and Deprotonation of Silanol Species 28
Figure IV.3 Kinetic Adsorption of of Pristine: Pseudo-First Order (a) and
 Pseudo-Second Order Model (b) ... 30
Figure IV.4 Adsorption of Composite: Pseudo-First Order (a) and
 Pseudo-Second Order Model (b) ... 31
Figure IV.5 Experimental Adsorption Data for Crystal Violet dye onto
 2:5 (w/w) Bentonite:Alginate Composite and the fits of the
 (a) Langmuir, (b) Freundlich ... 33
Figure IV.6 Experimental Adsorption Data for Crystal Violet dye onto
 3:5 (w/w) Bentonite:Alginate Composite and the fits of the
 (a) Langmuir, (b) Freundlich ... 34
Figure IV.7 Experimental Adsorption Data for Crystal Violet dye onto
 4:5 (w/w) Bentonite:Alginate Composite and the fits of the
 (a) Langmuir, (b) Freundlich ... 34
Figure IV.8 Experimental Adsorption Data for Crystal Violet dye
 onto Sodium Alginate and the fits of the (a) Langmuir,
 (b) Freundlich ... 35
Figure IV.9 Experimental Adsorption Data for Crystal Violet dye
 onto Acid Activated Bentonite and the fits of the (a) Langmuir,
 (b) Freundlich ... 35
Figure B.1 Standard Curve of Crystal Violet .. 48
Figure B.2 Scheme of Adsorption Mechanism in for Determining
 the Optimum pH .. 49
Figure B.3 Effect of pH on The Adsorption Capacity of Pure
 Bentonite ... 50
Figure B.4 Effect of pH on The Adsorption Capacity of Pure Sodium
 Alginate .. 51
Figure B.5 Effect of pH on The Adsorption Capacity of 2:5 w/w Ratio
of Bentonite-Alginate Nanocomposite52
Figure B.6 Effect of pH on The Adsorption Capacity of 3:5 w/w Ratio of Bentonite-Alginate Nanocomposite 53
Figure B.7 Effect of pH on The Adsorption Capacity of 4:5 w/w Ratio of Bentonite-Alginate Nanocomposite 54
Figure C.1 pH_{pzc} of Bentonite ... 55
Figure C.2 pH_{pzc} of Alginate ... 56
Figure C.3 pH_{pzc} of 2:5 (w/w) Bentonite:Alginate 57
Figure C.4 pH_{pzc} of 3:5 (w/w) Bentonite:Alginate 58
Figure C.5 pH_{pzc} of 4:5 (w/w) Bentonite:Alginate 59
Figure D.1 Plot design of t and q of Pristine................................. 63
Figure D.2 Plot design of t and q of Composite............................. 64
Figure 6E.1 The Plot Design of C_e and q_e at 30°C....................... 70
Figure E.2 The Plot Design of C_e and q_e at 50°C......................... 71
Figure E.3 The Plot Design of C_e and q_e at 70°C......................... 71
LIST OF TABLES

Table II.1 Adsorption Capacity of Crystal Violet on Various Adsorbents ... 4
Table II.2 Parameters of Adsorption Isotherm of Crystal Violet on Various Adsorbents ... 15
Table IV.1 FT-IR Assignments of Adsorbents .. 27
Table IV.2 pH_{pzc} and pH optimum each adsorbents ... 28
Table IV.3 Parameter of Pseudo-First Order and Pseudo-Second Order Equation for Crystal Violet Adsorption onto Bentonite-Alginate Composite .. 32
Table IV.4 Parameter of Langmuir and Freundlich Isotherm Equation for Crystal Violet Adsorption onto Bentonite-Alginate Composite ... 36
Table B.1 Ce versus A for Standard Curve of Crystal Violet ... 47
Table B.2 pH versus Qe for Pure Bentonite ... 50
Table B.3 pH versus Qe for Pure Sodium Alginate .. 51
Table B.4 pH versus Qe for 2:5 (w/w) Bentonite:Alginate .. 52
Table B.5 pH versus Qe for 3:5 (w/w) Bentonite:Alginate .. 53
Table B.6 pH versus Qe for 4:5 (w/w) Bentonite:Alginate .. 54
Table C.1 pH_{pzc} of Bentonite .. 55
Table C.2 pH_{pzc} of Alginate ... 56
Table C.3 pH_{pzc} of 2:5 (w/w) Bentonite:Alginate .. 57
Table C.4 pH_{pzc} of 3:5 (w/w) Bentonite:Alginate .. 58
Table C.5 pH_{pzc} of 4:5 (w/w) Bentonite:Alginate .. 59
Table D.3 The Data of Adsorption Kinetic ... 60
Table E.4 The Adsorption Isotherm Data of 2:5 (w/w) Bentonite:Alginate Composite ... 65
Table E.5 The Adsorption Isotherm Data of 3:5 (w/w) Bentonite:Alginate Composite ... 66
Table E.6 The Adsorption Isotherm Data of 4:5 (w/w) Bentonite:Alginate Composite ... 67
Table E.7 The Adsorption Isotherm Data of Sodium Alginate Adsorbent ... 68
Table E.8 The Adsorption Isotherm Data of Acid Activated Bentonite Adsorbent ... 69
PREFACE

The authors would like to thank God for His blessing that the Research Project entitled Bentonite-Alginate Polymer Nanocomposite for the Removal of Water-Soluble Cationic Dye has been accomplished. This report is a prerequisite in achieving Bachelor of Engineering degree in Chemical Engineering.

The authors realize that the completion of this report is achieved by the help of many people. Therefore, the authors would like to thank the persons below:

1. Suryadi Ismadji, Ph.D as Principal Supervisor and Felycia Edi Soetaredjo, Ph.D as Co-Supervisor;

2. Sandy Budi Hartono, Ph.D as Head of the Committees, Dra. Andriana Anteng Anggorowati, M.Si and Ery Susiany Retnoningtyas, ST., MT as members of committees;

3. Suryadi Ismadji, Ph.D as the Head of Chemical Engineering Process laboratory and Dra. Adriana Anteng Anggorowati, M.Si. as the Head of Chemical Analysis Laboratory;

4. Mr. Novi as laborant of Chemical Engineering Process Laboratory and Mr. Pudjo as laborant of Chemical Engineering Operation Laboratory;

5. Sandy Budi Hartono, Ph.D as Head of Chemical Engineering Department;

6. Suryadi Ismadji, Ph.D as Dean of Engineering Faculty;
7. Our parents and family who have given a lot of help and support, both materially and morally;

8. Our lecturers, friends and also those who are too many to be listed by name that had contributed their kind assistance.

The authors realize that this report is far from perfect, therefore any critics and comments which will better improve the research is gladly accepted. Lastly the authors hope that the report will be useful to all readers who need information regarding the research of the report.

Surabaya, May 22nd 2017

The authors
ABSTRACT

Dyes in wastewater produced from textile industry are hazardous pollutants and caused many environmental and health problems. There are various wastewater treatment for dyes removal, however one of the low cost and effective method is adsorption. In adsorption, good adsorbent is adsorbent that has high adsorption capacity, inexpensive and regeneratable. Activated carbon usually used as an adsorbent that has higher adsorption capacity compare to bentonite, but price of activated carbon is more expensive. In order to increase the adsorption capacity of bentonite as adsorbent, bentonite will be combine with natural polymer (alginate) to produce a composite, which called nanocomposite. This nanocomposite will be used to adsorpt cationic dye in wastewater of textile industry.

In this research, the process of nanocomposite preparation and performance was studied. Bentonite-alginate nanocomposite was made with ionotropic gelation method. First, bentonite was pre-treatment using hydrochloride acid 5 N, then bentonite dispersion and alginate solution was mixed in certain time then dropped into calcium chloride solution until gelispheres formed. Bentonite-alginate nanocomposite was tested in crystal violet dye as a model of dyes in wastewater textile industry. Adsorption capacity was measured using spectrophotometry method to determine the maximum adsorption capacity.

Keywords: adsorption, alginate, bentonite, crystal violet