Contents

Contributors xi
Preface xv
Acknowledgments xvii

I

OVERVIEW OF POLYPHENOLS AND HEALTH

1. Polyphenols in the Prevention of Acute Pancreatitis in Preclinical Systems of Study: A Revisit
 ELROY SAILERBA, SURESH RAO, MOHAMMED ADNAN, MICHAEL L.J. FAIS, TARISH SHIRKAR NAIR, RITESH D'CUNHA, RISHMINA DISOUZA, MANJESHWAR SHIRAH BALIGA
 1 Introduction 3
 2 Curcumin 4
 3 Resveratrol 5
 4 Quercetin 5
 5 Genistein 6
 6 Ellagic Acid 6
 7 Cinnamaldehyde 6
 8 Green Tea Polyphenols 7
 9 Conclusions and Future Directions 7

2. Polyphenols as Supplements in Foods and Beverages: Recent Discoveries and Health Benefits, an Update
 ANDREA PIETTELLI OLAGIO, DONIĆO CORREA PERES, DANIEL ABAS LAMBAR,רך AGUILAR
 1 Introduction 3
 2 Cinnamaldehyde 4
 3 Resveratrol 5
 4 Quercetin 5
 5 Genistein 6
 6 Ellagic Acid 6
 7 Cinnamaldehyde B-1 6
 8 Green Tea Polyphenols 7
 9 Conclusions and Future Directions 7

3. Xanthohumol and the Medicinal Benefits of Beer
 SUSAN M. ELROD
 1 Introduction 19
 2 History of Beer and Brewing 19

4. Polyphenolic Flavonoids and Metalloprotease Inhibition: Applications to Health and Disease
 DEREAL ACH, MARA ABRAMIĆ, VISNO RASTIJA, ROSEMARY YOKOVÍC
 1 Introduction 33
 2 Matrix Metalloproteases 34
 3 Angiotensin-Converting Enzyme 36
 4 Conclusion 38

5. Biological and Pharmacological Effects of Polyphenolic Compounds From Ecklonia cava
 AKIKO KOJIMA-YUASA
 1 Introduction 41
 2 Biological and Pharmacological Effects of Flavonoids From E. cava 41
 3 Protective Effect Against Ethanol-Induced Liver Injury 47
 4 AMPK in the Protective Effects of Flavonoids 49
 5 Conclusion 50

6. Clerodendrum volubile: Phenolics and Applications to Health
 OCHUKO L. BUKKAMNE, OAKUNLE SANHIL, MD. SHAHIDUL ISLAM
 1 Introduction 53
 2 Phenolics and Health 53
 3 Phytochemistry of Clerodendrum volubile 54
 4 Biological Activities of Clerodendrum volubile 57
 5 Proposed Mechanism of Action of C. volubile 65
 6 Conclusion 65
 Acknowledgments 66
 References 66

7. Eryngium campestre L: Polyphenolic and Flavonoid Compounds; Applications to Health and Disease
 ROZIZDI SOUMIA
 1 Introduction 69
 2 About the Plant 70
 3 Distribution 70

8. Further Reading

9. Glossary

3 Styles 20
4 Ingredients 21
5 Health Benefits of Beer Polyphenols: Xanthohumol 23
6 Summary 29
References 30
Glossary 32

33
34
36
38
38
41
41
47
49
50
50
53
53
54
57
65
65
66
66
69
69
70
70
CONTENTS

4 Traditional Uses

5 Phytochemistry

6 Biological and Pharmacological Activities

7 Conclusion

References

8. Antioxidant Activity of Anthocyanins in Common Legume Grains

WINDA CHRISTINA HARJEN, IGNAZUS RAEDI, A. F. JATI

1 Introduction

2 Free Radicals and Antioxidants

3 Anthocyanins

4 Legume Anthocyanin as Antioxidant

5 Conclusion

References

9. Tomato Polyphenolics: Putative Applications to Health and Disease

SRENA BAKER, SENSEM KAMILDOGLU, MERVE TOMAS, EBRA CAMPANOLI

1 Introduction

2 Health Effects of Tomato Phenolics

3 Concluding Remarks

References

10. Polyphenolic Compounds in Sweet Cherries: A Focus on Anthocyanins

KATHERINE KENT, NADINE HÖLZEL, NIGEL SWARTS

1 An Overview of the Nutritive and Nonnutritive Properties of Sweet Cherries

2 A Focus on Anthocyanins in Sweet Cherries

3 Anthocyanin Biosynthesis in Sweet Cherries

4 Measurement of Anthocyanin Content in Sweet Cherries

5 Pre- and Postharvest Factors That Impact on Anthocyanins in Sweet Cherries

6 Patterns of Global Growth and Economic Importance of Sweet Cherry Production

7 Important Sensory Attributes and Traditional Quality Indicators of Sweet Cherries

8 Consumer Preference for Sweet Cherries May Not Be Driven by Health

9 Sweet Cherry Consumption and Contribution to Habitual Anthocyanin Consumption

10 Sweet Cherries and Health Outcomes: Potential Mechanisms of Action

11 Conclusion: Major Gaps in Literature and Future Research Direction

Acknowledgments

References

11. Citrus Fruit Polyphenols and Flavonoids: Applications to Psychiatric Disorders

MARISSA ROSSARIA, ANNA MUSCATELLO, ROCCO ANTONIO ZOCCHI, ANTONIO BRUNO

1 Introduction

2 The Global Burden of Mental Illness

3 Moving Toward Integrative Prevention and Care: The Link Between Nutrition and Mental Health

4 Citrus Polyphenols and Flavonoids

5 Citrus Polyphenols in Mental Disorders

6 Conclusions and Future Directions

References

II POLYPHENOLS IN THERAPY OF OBESITY AND DIABETES

12. Anthocyanins and Diabetes Regulation

HONGHUI GUO, MIN XIA

1 Introduction

2 Chemical Properties of Anthocyanins

3 Dietary Anthocyanin Sources

4 Anthocyanin Bioavailability

5 Antidiabetic Effects of Anthocyanins and the Underlying Mechanisms

6 Conclusion and Perspective

Acknowledgments

References

13. The Role of Direct and Indirect Polyphenolic Antioxidants in Protection Against Oxidative Stress

LARS FORSGLÆR CHRISTENSEN

1 Introduction

2 Cytoprotective Proteins (Phase 2 Enzymes)

3 Induction of Cytoprotective Proteins

4 Direct and Indirect Antioxidants and Their Role in Protection Against Oxidative Stress

5 Polyphenol and Polyphenol-Derived Inducers of Cytoprotective Proteins (Indirect Antioxidant Effect)

6 Conclusions

References

14. Role of Protocatechuic Acid in Obesity-Related Pathologies: An Update

MASSIMO D'ARCHIVIO, BEATRICE SCAZZOCCHIO, ANNALISA SILENZI, CLAUDIO GIOVANNINI, ROBERTA MASIELLA

1 Introduction

2 Protocatechuic Acid: Food Content and Bioavailability

3 Obesity: A Global Challenge Yet Today

4 Mechanism of Action of PCA

5 Conclusion

References

15. Exposure to Polyphenolic Compounds Modulates Type 1 Diabetes: The Case of Genistein

GUANNIAN LIUANG, IOBLLA XI, TAI L. GUO

1 Introduction

2 Pathogenesis of T1D

References
III
MECHANISMS OF POLYPHENOLS
ANTIOXIDANT EFFECTS

16. Chocolate/Cocoa Polyphenols and Oxidative Stress
JUDETH E ALLGROVE, GLEN DAVISON
207
1 Introduction
2 Antioxidant Properties
3 Bioavailability
4 Research on Cocoa and Oxidative Stress
5 Summary
6 References

17. An Overview of Dietary Polyphenols and Their Therapeutic Effects
FALLAVIY BISAVAN, ANTARA BANERJEE, ANUSHA BANERJEE, RAMACHANDRAN MURUGESAN, FRANCESCO MARITTA, SURAJIT PATHAK
221
1 Introduction
2 Structural Classification of Polyphenols
3 Dietary Intake and Content of Polyphenols
4 Bioavailability and Distribution of Polyphenols
5 Epigenetic Modifications and Polyphenol Metabolism
6 Nutritional Genomics and Dietary Polyphenols
7 Novel Therapeutics Using Polyphenols
Acknowledgments
References
Further Reading

18. The Polyphenolic Compound Resveratrol Attenuates Pain: Neurophysiological Mechanisms
MAMIKO TAKEDA, SHIORI TAKAHAMA, YOSHIBOT DAIMU
237
1 Introduction
2 Classification of Pain
3 Pain Pathway in the Trigeminal System
4 Modulatory Mechanism of Resveratrol on the Neuropeptide Pathway
5 Modulatory Mechanism Underlying the Effect of Resveratrol on Pathological Pain
6 Functional Significance for Modulation of Pain Relief

19. Possible Benefits and Risks of Polyphenols Supplementation During Pregnancy
ANTONIO GONZALEZ-BULMES, SUSANA ASTIZ, BRATZ ISAAC, MARTA VAZQUEZ-GOMEZ, CONSOLACION GARCIA-CONTREAS
249
Outline
1 Introduction
2 The Role of the Intrauterine Environment in Pregnancy Development
3 The Role of the Intrauterine Environment in Postnatal Traits
4 Preventive Strategies and Therapies for IUGR
5 Alternative Tools for Prevention and Treatment of IUGR: Amino Acids and Antioxidants
6 Implications and Evidence for Beneficial Effects of Polyphenols Supplementation During Pregnancy
7 Possible Risks of Polyphenols Supplementation During Pregnancy
8 Concluding Remarks and Future Research
Acknowledgments
References

20. Flavonoids as Modulators of Neutrophils' Oxidative Burst: Structure-Activity Relationship
DANIELA RIBEIRO, EDUARDO FERNANDES, MARISA FREITAS
261
1 Introduction
2 Neutrophil Morphology
3 Neutrophil Phagocytosis
4 Production of Reactive Oxygen Species
5 Production of Reactive Nitrogen Species
6 Flavonoids
7 Effect of Flavonoids on Neutrophils' Oxidative Burst
8 Catechol Group in the B-Ring
9 3-OH in the C-Ring
10 C2–C3 Double Bond
11 Conclusion
Acknowledgments
References

CORINA T. MADERER-SCHOLDSKI, WOLFGANG F. GRAIER
277
1 Introduction
2 Mitochondria
3 Polyphenols
4 Manipulation of Mitochondrial Function by Polyphenols
5 Polyphenols as Treatment Strategies to Manipulate Mitochondrial (Dis)Function in Diseases
6 Conclusion
References
Glossary
BIOAVAILABILITY AND EFFECTS ON METABOLISM

22. Bioavailability of Flavonoids: The Role of Cell Membrane Transporters 295
JOVANA CVOROVIC, ROANS ZIBERNA, STEFANO FORNASARO, FEDERICA TRAMER, SABINA PASSAMONTI

1. Introduction 295
2. Principles of Membrane Transport 296
3. Indirect Evidence Supporting the Existence of Flavonoid Membrane Transporters 297
4. Anatomical Distribution of Flavonoid-Related Membrane Transporters 301
5. Issues Related to the Low Bioavailability of Flavonoids 310
6. Transporter-Based Flavonoid-Drug Interactions 311
7. Conclusion 312
Acknowledgments 313
References 313

23. Interaction of Polyphenols With the Intestinal and Placental Absorption of Some Bioactive Compounds 321
ELISA KREATING, CONCEICAO CALHAU, ANA FARIA, FATIMA MALET

1. Introduction 321
2. Effect of Polyphenols on the Transport of 1-Methyl-4-Phenylpyridinium 322
3. Effect of Polyphenols on the Transport of Folate 324
4. Effect of Polyphenols on the Transport of Thiamine 326
5. Effect of Polyphenols on the Transport of Glucose 328
6. Conclusions 332
References 332

24. Analyzing Ingredients in Dietary Supplements and Their Metabolites 337
JEEVAN K. PRASSAIN, STEPHEN BARNES, J. MICHAEL WYSS

1. Introduction 337
2. Anthocyanins 338
3. Flavanols 339
4. Flavones and Flavonols 340
5. Isoflavones 340
6. Extraction of Isoflavones 342
7. In Vivo Metabolism of Isoflavones 344
8. Conclusions 345
References 345

25. Metabolism of Dietary Polyphenols by Human Gut Microbiota and Their Health Benefits 347
SUBRAJ PATHAK, FALLAH IRSAVAN, ANUSHKA BANERJEE, ANTARA BANERJEE, GULDEN SAGICEOLU CELIC, LAURA HESI, FRANCESCO MAROTTA

1. Introduction 347
2. Dietary Intake of Polyphenols 349

VI
POLYPHENOLS IN DISEASE

26. Bioavailability and Biochemistry of Quercetin and Applications to Health and Diseases 361
GABRIELE CARULLO, MARIA TERESA BADOLOTO, FRANCESCA AIELLO

1. Chemical Features of Quercetin 361
2. Bioavailability, Absorption and Metabolism of Quercetin 362
3. Mechanistic and Preclinical Studies of Quercetin and Its Metabolites 364
4. Eaters of Quercetin and Their Therapeutic Applications 365
5. Conclusion 367
References 368
Further Reading 371

27. Effects of Quercetin and Its Combinations on Health 373
S.K. SHIBEO, LA. ZUPANETS, O.S. POPOV, O.O. TARASENKO, A.S. SHAMAY

1. Introduction 373
2. Basic Pharmacological Properties of Quercetin 374
3. Pharmacokinetic Properties of Quercetin and Ways of Modifying Them 376
4. Gastroprotective Effects of Quercetin 379
5. Angioprotective Activity of Quercetin 379
6. Effects of Quercetin on Hemostasis 379
7. Cardioprotective Properties of Quercetin 380
8. Application of Quercetin-Based Drugs in Chronic Kidney Disease 382
9. Quercetin-Based Drugs in Joint Diseases 386
10. Conclusion 391
References 392

NAVEEN JOSEPH MATHAI, DAVANAGERE MURALI SUWAYENDRA, MOHAMMED ABDAN, TARIKH SHEKR NAQ, THOMAS GEORGE, SONiya ABRAHAM, MANJISHWA SHINATHBALIGA

1. Introduction 397
2. Green Tea in Arthritis 398
3. Phytochemistry of Green Tea 398
4. Traditional and Validated Uses 399
CHAPTER 8

Antioxidant Activity of Anthocyanins in Common Legume Grains

Winda Christina Harlen, Ignasius Radix A.P. Jati
Widy Mandala Catholic University Surabaya, Surabaya, Indonesia

Acronym and Abbreviation

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABTS</td>
<td>2,2' azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2-diphenyl-1-picrylhydrazyl</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>GAE</td>
<td>gallic acid equivalent</td>
</tr>
<tr>
<td>GPx</td>
<td>glutathione peroxidase</td>
</tr>
<tr>
<td>MDA</td>
<td>malondialdehyde</td>
</tr>
<tr>
<td>NADPH</td>
<td>nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>SOD</td>
<td>superoxide dismutase</td>
</tr>
<tr>
<td>TBA</td>
<td>thiobarbituric acid reactive substances</td>
</tr>
<tr>
<td>USDA</td>
<td>The United States Department of Agriculture</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

Legumes have long been consumed as rich sources of protein in human diets all over the world. Usually, people consume legumes in various cooked forms (boiled, fermented, fried) and they are served as either main or side dishes. In addition, legumes are also popular to be eaten as a snack (e.g., peanuts, soybeans) in many Asian and African countries. Legumes are plants belonging to the family Leguminoseae. Among many, soybean, peanut, pea, common bean, lentil, lupin, mesquite, carob, alfalfa, and clover are several examples of the best-known and most-consumed legumes in the world.

Recently, recommendations to increase the consumption of legumes have been widely promoted based on many chemical, biochemical, clinical, and epidemiological studies which show that there are positive correlations between consuming legumes and decreasing the incidence of various degenerative diseases, such as cancer, diabetes, coronary heart disease, and obesity. The ability of legumes to reduce the incidence of such diseases is believed to be attributed to biologically active compounds in legume grains. Among others, phenolic constituents including anthocyanins have been deeply explored in relation to their health-promoting properties. Therefore, in addition to their high nutrient profile, legumes are also rich sources of bioactive compounds, especially phenolics; recent research studies are comprehensively focusing on the role of phenolic constituents such as anthocyanin as antioxidants in human diet and their role in promoting human health, as well as in preventing the incidence of various diseases.

The increased rate of degenerative diseases has been investigated by numerous researchers who have suggested that factors such as unhealthy lifestyle, unbalanced diet patterns, and pollution are responsible as the trigger for incidence of degenerative diseases. One of these diseases is coronary heart disease, which is seen as the number one killer in the world. Changes in diet patterns, with more vegetables and legumes and less meat, are believed to have a favorable impact on human health and could decrease the risk of coronary heart disease, as well as other diseases.

2 FREE RADICALS AND ANTIOXIDANTS

The ability of legume grains to decrease the rate of disease or to promote human health is believed to be a result of a synergical effect between the nutrient content, which is rich in proteins and low in fat, with the bioactive compounds found in legumes, such as phenolics and anthocyanin. Bioactive compounds in legume grains play an important role as antioxidants or free radical scavenging compounds, which could balance the number of free radicals in the human system.
Free radicals are molecules with unpaired electrons and are very reactive in nature. Therefore, they can damage surrounding molecules. In the human system, lipid, protein, DNA, and carbohydrate are molecules susceptible to attack by free radicals, resulting in diseases such as atherosclerosis, coronary heart disease, and cancer. In the normal condition, a certain level of free radicals is found everywhere in the human body, produced as the result of metabolic processes. Free radicals are also useful because they play a role in several biological processes— for example, the phagocytic work by white blood cells—and also they are believed to act as a cellular messenger in a biological process called redox signaling. However, unhealthy lifestyle and diet are believed to create an excessive number of free radicals. The free radical will initiate a chain reaction of the oxidation process, which causes damage to macromolecules. Degenerative diseases are believed to be a result of such severe oxidative stress.

Antioxidants are therefore needed to balance the number of free radicals in the human system, thus preventing damage to macromolecules due to oxidative stress. An antioxidant is any substance that has the ability to inhibit the oxidation of other molecules when present in low concentrations. The human defense system actually produces its own antioxidant substances, which are called endogenous antioxidants, in the form of enzymes (superoxide dismutases, catalase, glutathione peroxidase) and nonenzyme antioxidants (alpha lipoic acid, coenzyme Q10, metal-binding proteins). However, under abnormal/diseased conditions, the number of free radicals exceeds the production of antioxidants in the human system. Thus the body needs the intake of exogenous antioxidants from the diet. Enhancing the antioxidant capacity of the human system by optimizing the dietary intake of natural antioxidants is one of the best strategies to balance between free radical and antioxidant activity in the human system.

3 ANTHOCYANINS

Among many antioxidant compounds found in legume grains, anthocyanins are a bioactive compound that has been widely investigated due to its ability to scavenge free radicals and also to chelate metal due to its chemical structure. Therefore, anthocyanin also possesses a strong inhibitory effect against lipid oxidation [1]. Anthocyanins are representative of a wide group of flavonoids and are derivatives of 2-phenylbenzopyrylium, which is responsible for the attractive colors (blue, violet, purple, and even black) of the plant parts, including flowers, fruits, vegetables, and seeds [2]. Various food products of fruit and vegetable origin are the major sources of anthocyanin compounds. Anthocyanins can also be found in legumes that have black, purple, blue, and red color, for example, red kidney bean, pea, and black soybean [3-5]. The basic chemical structure of anthocyanin is shown in Fig. 8.1.

4 LEGUME ANTHOCYANIN AS ANTIOXIDANT

Legume seeds are included as pulse crops, which belong to the Leguminosae family. It has been cultivated in many areas and consumed as a staple or complementary food in traditional and modern diets. The nutritional value of legumes has been broadly investigated. Legumes are rich in proteins, fiber, vitamins, amino acids, polypeptides, flavonoids, and phenolic compounds, which are considered as a good ingredient of a functional food formulation. A number of researchers have reported the potentiality of legumes as a good source of antioxidants and also their ability to prevent diseases. The major compounds of legumes responsible for their high antioxidant activity are believed to be the phenolic and flavonoid compounds.

Anthocyanin, which belongs to the flavonoid group, are a natural pigment that is broadly dispersed in plants that are used in the human diet, including fruits, vegetables, and colored legumes [6]. The anthocyanin occurring in legumes appears as a darker color, ranging from red, purple, greenish, blue/grey, to black, in legume seed coats. Anthocyanins in legumes are correlated with a broad range of biological activities, such as antioxidant, anticancer, and antiinflammatory agent. Its mechanism in preventing some diseases through the role of antioxidant has been investigated. Likewise, the effect of food processing on the antioxidant activity of anthocyanin has been examined intensively. Regarding the development of legumes as functional food ingredients, legume anthocyanin’s promising ability as an antioxidant is still an interesting topic in recent studies.

4.1 Black Soybean

Soybeans (Glycine max L. Merril) have been widely used as a food source around the world due to their
Various nutrient and functional compounds, such as proteins, lipids, vitamins, fiber, and phytochemicals. Soybeans are popular in China, Japan, Korea, India, and Southeast Asia nations [7]. Particularly in Asia, soybeans are used in the making of soya paste, soya curd, tempeh, tofu, and oil [8]. Soybean consumption's beneficial health effects include prevention of cancer, early aging, diabetes, and cardiovascular disease [9].

One of the soybean varieties is black soybean. Black soybean is commonly consumed as a food ingredient, especially in fermented products. In Korea, black soybean is utilized to make chujang and jajang. Natto is also popular as a black soybean-based fermented food in Japan. In Indonesia, black soybeans are used for the production of tempeh [10]. The utilization of black soybean for food production is presented in Table 8.1.

Recent research shows that black soybean has been found to possess a high amount of anthocyanins along with strong biological activity [16]. Fermentation of black soybean seed coats is contributed by anthocyanin. Anthocyanins in the black soybean seed coat are reported to have antioxidant activities and abilities for α-glucosidase inhibition, regulation of adhesion molecules, protection from ischemia, repertusion of heart injury, stimulation of wound healing in fibroblasts, and prevention of inflammation in endothelial cells [17]. Anthocyanin may be as essential as isoflavone in determining black soybean characteristics and its functional source. Moreover, the radical scavenging effects of anthocyanin against DPPH and ABTS radicals were stronger than other isoflavones [9].

The anthocyanin compositions are diverse among different black soybean varieties. A study of the correlations between antioxidation and the contents of total phenolics and anthocyanin in 127 accessions of black soybean in China has been reported [18]. Major differences existed among 127 types of accessions, which came from different geographical regions. The average values of total antioxidant capacity of black soybean were remarkably higher than for yellow soybean, indicating that active material contents of black soybean are apparently superior to yellow soybean, due to its anthocyanin content [19]. Related to anthocyanin content, the best type of black soybean was the autumn sowing type, followed by the summer sowing type and the spring summer type [18]. The anthocyanin content may either be indicated by genetic means or planting conditions and ecological environments.

A recent study showed that nine anthocyanins were found in soluble phenolics that are isolated and identified from the extract of black soybean [8]. Three major anthocyanins, cyanidin-3-glucoside, delphinidine-3-O-glucoside, and petunidin-3-O-glucoside, respectively constitute more than 90% of the total anthocyanin content, but the predominant anthocyanin in black soybean was cyanidin-3-glucoside [20]. Some animal model studies revealed that cyanidin-3-O-glucoside is the most bioactive anthocyanin in avoiding diabetes and obesity-related diseases [21]. Cyanidin-3-O-glucoside content in the black soybean seed coat ranged from 6.275 to 19.808 mg/g, approximately 75% to 96% of total anthocyanin content [9]. Anthocyanin content and composition may be highly influenced by the distinct cultivar, genetics, and environmental stresses, as shown in Table 8.2 [20].

Anthocyanin showed obvious antioxidant capacity in many in vivo and in vitro studies, as shown in Table 8.3. In vitro antioxidant capacity of anthocyanin of black soybean varieties in Indonesia by monitoring TBARS formation has been reported [10]. All of the anthocyanin extracted at various levels from black soybean was effective to inhibit low density lipoprotein (LDL) oxidation. A greater inhibition of LDL oxidation was found through black soybean consumption than for yellow soybean [26,27]. The seed coat of black soybean, which contains anthocyanins, was reported to have higher antioxidant activity than the yellow soybean coat. The lag time of LDL oxidation by the black soybean seed coat extract was almost four times longer than the lag time of LDL.

TABLE 8.1 Black Soybean-Based Product

<table>
<thead>
<tr>
<th>Products</th>
<th>Description</th>
<th>Countries of production</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natto</td>
<td>Fermented soybean paste, produced through the fermentation of soya with Bacillus subtilis</td>
<td>Japan</td>
<td>Park et al. [11]</td>
</tr>
<tr>
<td>Tofu</td>
<td>Soybean curd made by coagulation of heated soya milk with coagulant, followed by moulding and pressing the curd to draw the whey</td>
<td>Asian Countries</td>
<td>Gaertula et al. [12]</td>
</tr>
<tr>
<td>Chunjang</td>
<td>Black soybean paste, fermented by Bacillus species</td>
<td>Korea and China</td>
<td>Bai et al. [13]</td>
</tr>
<tr>
<td>Jajang</td>
<td>Black soybean sauce, made from fried chujang, fermented by Bacillus species</td>
<td>Korea and China</td>
<td>Bai et al. [13]</td>
</tr>
<tr>
<td>Tempeh</td>
<td>Fermented soybean with fungus, such as Rhizopus oligosporus and Rhizopus oryzae</td>
<td>Indonesia</td>
<td>Chang et al. [14]</td>
</tr>
<tr>
<td>Kinana, penouyan, and hawaijer</td>
<td>Fermented food with sticky texture, gray tan color, with slight ammonieng flavor produced by natural fermentation</td>
<td>India</td>
<td>Tamang [15]</td>
</tr>
</tbody>
</table>
8. ANTI-OXIDANT ACTIVITY OF ANTHOCYANINS IN COMMON LEGUME GRAINS

TABLE 8.2 Total Anthocyanin Contents of Different Black Soybean Varieties

<table>
<thead>
<tr>
<th>Black soybean varieties</th>
<th>Country of origin</th>
<th>Total anthocyanin content (mg/g)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geomjeonggok 2</td>
<td>Korea</td>
<td>20.030</td>
<td>Man et al.</td>
</tr>
<tr>
<td>Crop year: 2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop year: 2010</td>
<td></td>
<td>23.043</td>
<td></td>
</tr>
<tr>
<td>Seonheukkong</td>
<td></td>
<td>8.885</td>
<td></td>
</tr>
<tr>
<td>Crop year: 2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop year: 2010</td>
<td></td>
<td>12.697</td>
<td></td>
</tr>
<tr>
<td>Choonja 2</td>
<td></td>
<td>10.948</td>
<td></td>
</tr>
<tr>
<td>Crop year: 2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop year: 2010</td>
<td></td>
<td>10.904</td>
<td></td>
</tr>
<tr>
<td>Choonja 3</td>
<td></td>
<td>10.894</td>
<td>Xu et al.</td>
</tr>
<tr>
<td>Crop year: 2009</td>
<td></td>
<td></td>
<td>[18]</td>
</tr>
<tr>
<td>Crop year: 2010</td>
<td></td>
<td>14.072</td>
<td></td>
</tr>
<tr>
<td>Dongbuichun</td>
<td>China</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Befangchun</td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Nanfangchun</td>
<td></td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Nanfangxia</td>
<td></td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Malik</td>
<td>Indonesia</td>
<td>13.6</td>
<td>Astadi et al. [10]</td>
</tr>
<tr>
<td>Gilmar</td>
<td></td>
<td>14.5</td>
<td></td>
</tr>
</tbody>
</table>

oxidation by the yellow soybean seed coat [27]. Total polyphenol content of black soybeans was also higher than the yellow soybeans. The LDL protection of anthocyanin may be due to metal-chelating and radical scavenging capacity, but the mechanism by which the extract inhibits LDL oxidation in vitro remains unclear. Another research study on in vitro antioxidant capacity of anthocyanin has revealed that the multiple carbon ring structure that belongs to anthocyanin, which is similar to cholesterol, has a greater opportunity to protect cholesterol from oxidation. It may potentially contribute to preventing the inflammation related to cardiovascular and other chronic diseases [28].

Fermented black soybean has a higher antioxidant content compared to nonfermented soybeans [22]. Natto, as a fermented product of black soybeans, has fibrinolytic activity due to its nattokinase enzyme. Natto consumption decreased total cholesterol level in hypercholesterolemia rat model serum [11,22]. It was also reported to have antithrombotic effects and inhibit coagulation of platelets, which was generated by the increasing of prothrombin time and the euglobulin clot lysis time in rat models fed with 750 and 1500 mg/head/day natto dried powder. There were no statistical differences in antithrombotic effects between those rats fed with natto dried powder and the control group, which received 100 mg/head/day aspirin. The dried natto powder contains not only nattokinase but also other biologically active compounds. This may confirm that normal dietary intake of natto offers potential health benefits in preventing cardiovascular disease. Moreover, black soybean natto consumption could affect the reproduction system of hypercholesterolemic male mice by increasing the density and motility of sperm and the testosterone level, as compared to a high-fat fed mice group [22].

Another research study on the inhibitory effect of black soybean supplementation on nonalcoholic fatty liver disease (NAFLD) found that black soybean had inhibitory effects on the cholesterol metabolism and insulin resistance of mice receiving a high cholesterol diet (HCD) [23]. Mice receiving black soybean supplementation had lower blood fasting glucose and insulin levels compared to the group of mice that received HCD. Black soybean supplementation also decreased liver total cholesterol and triglyceride levels in mice compared to the HCD group. The alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, which were analyzed to evaluate liver function, were significantly increased in the HCD group compared to the normal cholesterol diet (NCD) group, but there were no statistical differences among all the experimental groups receiving black soybean supplementation. The antioxidant activities of black soybean were analyzed using hepatic antioxidant enzyme activities, including SOD, GPx, and catalase. The results found that the SOD, GPx, and catalase activities were significantly decreased in the HCD group and were

TABLE 8.3 Health Promoting Properties in Several Black Soybean Products

<table>
<thead>
<tr>
<th>Soybean product</th>
<th>Health promoting properties</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black soybean natto</td>
<td>Hypocholesterolemic therapy for treating the male reproduction system</td>
<td>Gofur and Lestari [22]</td>
</tr>
<tr>
<td>Black soybean seed coat extract</td>
<td>Anti-inflammatory and anti-obstructive effects on plaque development and formation in rat atherosclerosis disease models</td>
<td>Kim et al. [23]</td>
</tr>
<tr>
<td>Fermented black soybean with Bacillus spp.</td>
<td>Inhibition of Angiotensin Converting Enzyme (ACE)</td>
<td>Juan et al. [24]</td>
</tr>
<tr>
<td>Roasted black soybean powder</td>
<td>Improve cholesterol metabolism, insulin resistance, and alleviate oxidative damage in Non-Alcoholic Fatty Liver Disease (NAFLD)</td>
<td>Jung and Kim [25]</td>
</tr>
<tr>
<td>Thai Fermented soybean (buna nasi)</td>
<td>Enhance free radical-scavenging activity and ferric reducing antioxidant power, inhibit LDL oxidation</td>
<td>Dajanta et al. [26]</td>
</tr>
</tbody>
</table>
significantly higher in all the experimental groups supplemented with black soybean than in the HCD group. The Malondialdehyde (MDA) and nitrate levels of groups receiving black soybean supplementation was lower than the HCD group, indicating that black soybean could regulate antioxidative enzyme activities in the liver of NAFLD mice. The serum adiponectin, which is involved in insulin resistance in NAFLD, was significantly lower in the HCD group than in the NCD group and largely increased with black soybean supplementation in a dose-dependent manner. Black soybean influences insulin sensitivity and regulation of blood glucose by improving fatty acid oxidation, glucose intake, and insulin resistance via adiponectin secretion. Therefore, black soybean supplementation may have effectively prevented NAFLD, due to its capacity to inhibit fat digestion, fat adsorption, and insulin resistance [29].

4.2 Common Bean

Common beans (Phaseolus vulgaris L.), which are extensively consumed throughout the world, play a key role in the traditional human diet. They have been recently developed as a food ingredient in several food products, mainly because of the high content of protein, starch, dietary fiber, micronutrients, and bioactive compounds with low levels of fat [29-31]. The greatest varieties of leguminous plant can be found in tropical and subtropical areas [32]. There are more than 40,000 varieties of common beans in the world. It has one of the highest levels of variation in growth habit, seed characteristics, maturity, and adaptation [33].

Dry beans, the primary product of common beans, are considered to be exceptional commodities related to their long storage life, good nutritional properties, and simple storage for eating. The health benefit of consuming beans has been established in the later epidemiological studies, especially related to the antioxidant capacity, which could be observed by analyzing the amount of anthocyanins, isoflavones, and other polyphenol compounds [34]. Those bioactive components are responsible for the antioxidant activity of common beans. Similar to the black soybean, the seed coat is also responsible for the antioxidant capacity of common beans, as shown in Table 8.4. Determination of color could be a good indicator to predict the antioxidant capacity of beans. The color features of dry kidney beans are related to the anthocyanin content and antioxidant activities of 26 kidney beans cultivated in China [35]. Some individual anthocyanins observed were cyanidin, delphinidin, pelargonidin, peonidin, pelargonidin, and malvidin. The color feature of bean coat was analyzed using a colorimeter. The results showed that some of the kidney beans with the lighter seed coat color contain smaller anthocyanin content if compared to the darker seed coat. There was a strong correlation between the delphinidin content and the seed coat color of kidney bean. The 3-O-glucosides of delphinidin were found to be the major anthocyanin of black beans [34-36]. The total anthocyanin contents in the seed coat ranged from 0.046 to 0.161 mg/g and was reported to be higher than some fruits and vegetables with dark color, such as blueberries and red cabbage. The highest total anthocyanin content was found in cultivar Honghuaheizibaijia (5.84 mg/g), followed by the Honghuaheizibaijia (4.76 mg/g) and Jiuliqing (4.55 mg/g). The anthocyanin composition reported in common beans varied compared to cowpea [37].

Another legume cultivated in Asia is red adzuki beans (Vigna angularis). This legume was traditionally used for making red bean paste [38]. The adzuki bean seed coat contains a high amount of polyphenols identified as catechin and epicatechin gallates, quercetin glycosides, myricetin, anthocyanins, and procyanidin dimers [39]. The role of adzuki bean bioactive components in preventing certain diseases has been recently reported. Adzuki bean seed coats (ABSC) treatment on hypertensive rats has attenuated vascular oxidative stress and inflammation in spontaneously hypertensive rats. Polyphenol-containing adzuki bean seed coats restrained the elevation of rat's systolic blood pressure throughout the treatment period. The NADPH stimulated O2- level and the NADPH oxidase subunits decreased significantly in the aorta of spontaneously hypertensive rats which were treated by ABSC, compared to the untreated ones, suggesting that ABSC suppressed excess O2- production in the aorta during progression of hypertension. Thus, ABSC treatment could be useful as a preventive strategy for hypertension and atherosclerosis [40].

<table>
<thead>
<tr>
<th>Seed coat color/variety</th>
<th>Anthocyanin content</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cream</td>
<td>0.055%*</td>
<td>Diaz et al. [34]</td>
</tr>
<tr>
<td>Yellow</td>
<td>0.056%*</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>0.048%*</td>
<td></td>
</tr>
<tr>
<td>Pink</td>
<td>0.062%*</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>0.161%</td>
<td></td>
</tr>
<tr>
<td>Purple</td>
<td>0.049%*</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0.25-0.47 mg/g</td>
<td>Akond et al. [37a]</td>
</tr>
<tr>
<td>Cream mottled</td>
<td>0.05-0.16 mg/g</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>0.06-0.15 mg/g</td>
<td></td>
</tr>
<tr>
<td>Pink with black spot</td>
<td>0.16 mg/g</td>
<td></td>
</tr>
<tr>
<td>Light cream</td>
<td>0.14 mg/g</td>
<td></td>
</tr>
</tbody>
</table>

* Expressed as delphinidin-3-glucoside equivalents.
Food processing has effects on the antioxidant capacity of common beans. The health benefit of common bean consumption depends mainly on their thermal processing [41]. Anthocyanin-containing beans such as black beans, kidney beans, and pinto beans are usually cooked or thermally processed before being consumed. Anthocyanins are sensitive to heat but there was no significant degradation of the total phenolic content of canned and open-pan-cooked black beans compared to crude black beans [41]. However, the total phenolic content was not always related to the antioxidant capacity. Total phenolics and flavonoid content of common beans increased after toasting, rather than boiling or cooking by autoclaving [42]. Thermal processing may release more bound phenolic acids from the breakdown of the cellular constituents. The stability of antioxidant products such as phenolics and flavonoids during heating may be due to the formation of Maillard products, such as hydroxymethylfurfuraldehyde, that also exhibit high antioxidant capacity [42,43]. Soaking dry beans before cooking could lead to the softening of wall tissues and increase the solubility of bound polyphenols that may later leach into the soaking water during the process. Nevertheless, the amount of polyphenol compound leach was not significant. Another processing method that can be used to increase the utilization of common beans as a good source of antioxidants in food production is fermentation. Bacillus subtilis and Lactobacillus plantarum strains were used as microbial agents in solid state and liquid state fermentation using kidney beans var. Pinto [44]. The results indicate that the solid state fermentation using Bacillus subtilis contains high soluble phenolic compound content (31–36mg/g) and antioxidant activity (508–541 µmol trolox equivalent/g), while liquid state fermentation extract using the Lactobacillus plantarum strain showed potential antihypertensive activity related to high levels of γ-aminobutyric acid (GABA) and angiotensin converting enzyme inhibitory (ACEI) activity (90%). Thus, this revealed that fermented kidney bean var. Pinto can be a good source of bioactive compounds. The fermentation process yields water-soluble functional extract that can be used as functional ingredients in novel foods and nutraceuticals to prevent cardiovascular diseases [44,45].

Despite the antioxidant activity and other health benefits of common beans, there is still limited information on the transformation of those biological components associated with the food matrix during gastrointestinal digestion, especially in the form of a food product. Later studies have simulated the whole digestion process, from mouth to colon, to estimate bioaccessibility and small intestine permeability of free phenolic compounds in a corn cooked-common bean flours chips [46]. The DPPH and ABTS antioxidant capacity of the chips in vitro gastrointestinal digestion was found higher at the mouth stage in comparison to methanolic extract. As the gastrointestinal digestion progresses, the antioxidant activity increases until reaching the large intestine, where the value decreases. The lowest antioxidant activity reported in the large intestine might be due to some phenolic compounds that cannot cross the epithelial intestine barrier and reach the colon, where colonic microflora ferment them and modify the antioxidant capacity [46,47]. Apparent permeability (Papp coefficient) was also investigated to define the rate of accumulation of a compound in a receptor chamber normalized by superficial tissue area and it has been used as an ex vivo measurement related to human absorption coefficient [46,48,49]. They found that the Papp coefficient for phenolics compounds were high, suggesting that the model applied is similar to an in vivo model [46].

Numerous studies on functional bioactive compounds in common beans have focused on the amount of the component, the health benefit in a crude form and in food mixture or food products, and the effects of processing on the antioxidant capacity. However, studies of the in vivo bioavailability and bioaccessibility through gastrointestinal models are still limited. With regard to the importance of such topics, more research related to the bioavailability and bioaccessibility of common bean antioxidant compounds needs to be conducted.

4.3 Cowpea

Cowpea (Vigna unguiculata), also known as black-eyed peas, southern peas, and crowder peas is a kind of pulse grain which is the most widely produced pulse grain behind common dry beans (Phaseolus vulgaris) and chickpea (Cicer arietinum) [50,51]. It can grow well in an area which usually usable for most other legumes because of its heat and drought tolerance, making cowpea as an environment and climate-change friendly crop. West Africa is the world largest cowpea productions, accounts for more than 87% of the world production and use. Cowpea were more popular than common legume grains to be used in Africa [52].

Cowpea contains bioactive compounds including polyphenols which are condensed in the seed coat. As in found on soybean and common beans, the composition of phenolics in cowpea varieties are also diverse, mainly be affected by seed coat color. The phenolic compounds are responsible for most of the coloration observed in cowpea varieties, ranging from white, red, cream, bronze, purple, to black [50,53]. The seed color, polyphenol structure and composition are directly affects specific mechanism for disease prevention and also influence nutrient bioavailability of cowpea varieties.

The major phenolic compound found in cowpea is the phenolic acids [53]. Red cowpea phenotypes tend to have
the highest phenolic acids compared to other cowpea varieties. The phenolic content of cowpea was ranging from 19.1 to 48.3 mg/100 g for a set of 15 commonly consumed cowpea varieties, considerably higher than the phenolic content of common dry beans (*Phaseolus vulgaris*). The phenolic acids are possibly an important contributor to health benefits related to phenols in cowpea and other pulses [50].

Anthocyanin is a bioactive compound that also found in cowpea. It found only in a specific phenotypes, usually in the black pigmented seed (1.7-3.9 mg/g) and concentrated mostly in the seed coat, showed as more than fivefold relative to the entire seed [50, 54, 55]. Seed coat also contained approximately 10 times more flavonoid compared to whole seeds [56]. Anthocyanin found in black, grey, navy blue, green, and black/grey varieties of cowpea, dominated by delphinidin-3-O-glucoside and cyanidin-3-O-glucoside which account for 68%-74% of all the pigments [37]. Besides delphinidin and cyanidin, other anthocyanins presented in cowpea are petunidin, peonidin, and malvidin, as shown in Table 8.5. Other pigmented red, maroon, and brown seed coat varieties contain no measurable anthocyanins [6, 37]. Regarding the fact that anthocyanin were concentrated in the seed coat, processing technology that remove the seed coat will unwittingly eliminate the benefit of anthocyanin, as well as removing valuable other phenolic compound and fiber. Similar to common beans, thermal process have limited effect on the profile of phenolic compound. Additional work is needed to uncover the metabolism of bioactive compound in cowpea and their specific properties in order to be able to utilize cowpea in food formulation and products such as snack, cereals, and baked goods with high bioactive compound content and antioxidant activities.

Table 8.5 Anthocyanin Composition of Cowpea Seed (Awika and Duodu [50]; Chang and Wong [55]; Ojwang et al. [54])

<table>
<thead>
<tr>
<th>Anthocyanin compound</th>
<th>Proportion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delphinidin-3-O-glucoside</td>
<td>26-33</td>
</tr>
<tr>
<td>Delphinidin-3-O-galactoside</td>
<td>8-11</td>
</tr>
<tr>
<td>Cyanidin-3-O-glucoside</td>
<td>24-27</td>
</tr>
<tr>
<td>Cyanidin-3-O-galactoside</td>
<td>1-8</td>
</tr>
<tr>
<td>Petunidin-3-O-glucoside</td>
<td>11-14</td>
</tr>
<tr>
<td>Petunidin-3-O-galactoside</td>
<td><2</td>
</tr>
<tr>
<td>Peonidin-3-O-glucoside</td>
<td>2-3.5</td>
</tr>
<tr>
<td>Peonidin-3-O-malonylgalactoside</td>
<td><2</td>
</tr>
<tr>
<td>Malvidin-3-O-glucoside</td>
<td>10-13</td>
</tr>
<tr>
<td>Malvidin-3-O-acetylglucoside</td>
<td>3</td>
</tr>
</tbody>
</table>

4.4 Peanut

Peanuts (*Arachis hypogaea*) is one of the Leguminosae family which are rich in oils, protein, vitamins, and other bioactive component such as phenolic compounds [57]. Peanuts was widely consumed across the world due to its unique flavor and flexibility in processing. Peanut can be eaten raw, boiled, roasted, and used in recipes not only in traditional food but also made into modern food ingredient [58]. Recent research shows that peanut was rich in antioxidant, phenolics, and other phytochemicals such as flavonoids, proanthocyanidins, and anthocyanins [58-60]. Those phytochemicals were found having role in preventing cancer, coronary heart diseases, degenerative nerve disease, Alzheimer, and viral/fungal infections [58]. The polyphenols and flavonoid in peanuts were responsible on its antioxidant capacity, antimutagenic capacity, and anti-proliferative effects [60].

Similar to other legumes, seed color in peanuts varieties were also rich in antioxidant. Peanut seed coat was varied from colorless/white, red, to deep purple/black. Seed coats were very light, contributed only 2%-7% of the total kernel weight. However, the total phenolic content (TPC) of seed coats (97.3-133.5 mg GAE/g) was significantly higher compared to raw kernel (3.28-9.20 mg GAE/g) and cotyledon (0.88-1.85 mg GAE/g) for 6 varieties of peanuts found in China [58]. Moreover, seed coats also contributed to the majority of TPC (67%-87%) presented in raw kernel, while only 12%-18% of TPC is allocated to the cotyledon. The same trend was also found in the total flavonoids content (TFC), condensed tannin content (CTC), monomeric anthocyanin content (MAC), and antioxidant capacity analyzed with DPPH and FRAP, which indicated that seed coats were the major source of antioxidant found in peanuts. Those trends represented in both for the red and the black seed coat peanuts, but the MAC for black seed coat peanuts appeared higher than that observed in red seed coats. The study also revealed that boiling may leads to significant losses in phytochemical contents and the antioxidant capacities of colored-seed coat peanuts.

Regarding the function of peanuts varieties as the source of antioxidant, the seed coat were not the only important one which define the total antioxidant capacity. The colorless peanuts varieties also have potential of being a good source of antioxidant. The antioxidant capacity of peanuts is not always directly related to the intensity of their seed color [60]. The results indicated that the Israeli peanut cultivars that have pale pink seed coat were discovered to have very high TPC, TFC, and FRAP antioxidant capacity, although their Total Anthocyanin Content (TAC) value was not very high. It may cause by the colorless flavonoids which could be the major source of antioxidant activity in colorless-seed coat peanuts and that colored anthocyanins plays only a secondary role.
Peanut skins have been used as fortificants in developing new food products to improve the content of bioactive compound. The aim of food fortification is to improve the health benefit of food. Peanut skins contains high proanthocyanidin content which have beneficial effect, however it may cause bitterness and astringent mouthfeel. Therefore, the formulation must be taken into account in order to produce food product with acceptable sensory characteristic. Peanut skins have been used as an ingredient for chocolate cookies fortification in order to increase their polyphenol content [61]. Peanut skins was added at 1.3%, 1.8%, and 2.5% to cookies in order to increase their polyphenol content. The result showed that the addition of peanut skins in those three different levels increased the total phenolic content and DPPH scavenging activity of the product by 12%-50% and 67%-250%, respectively. The antioxidant evaluation carried out using ABTS radical scavenging activity, \(\cdot \text{OH} \) scavenging activity, and hydroxyl radical scavenging activity indicated similar trend as the DPPH assay. Moreover, the data showed that heating process did not have any destructive effect on either TPC or scavenging activity. However, the heating process did affect the product sensory characteristic due to an unexpected food color that has been developed after heating the polyphenol-rich materials in the cookies. Nevertheless, the color change did not affect the acceptability of the cookies in sensory evaluation since the color underlined the chocolate flavor which added to the cookies in order to mask the bitterness and astringent mouthfeel of the peanut skin.

Another food that could be fortified by peanut skins was peanut butter. The addition of ground peanut skins into peanut butter in certain levels resulted in a concentration-dependent increase in the total phenolic content and antioxidant activity. Adding peanut skins was effectively increased the total phenolic content, antioxidant capacity, and fiber content of the fabricated peanut butters in a concentration-dependent manner, at the same time maintaining the USDA’s standard of identity for peanut butter. The sensory evaluation of the peanut skin-fortified peanut butters was also greatly acceptable [62].

The positive effects of consuming peanuts and its product, such as peanut oils, peanut flour, and peanut seed coats, are well established. Peanuts have healthy fatty acid profile and being good sources of components that are capable of scavenging free radicals [63]. The finding of recent studies has already shown that peanuts and its by-product can be potentially used as an ingredient in functional food formulations. Improvement of existing product may lead into product diversification of established brand available in the market.

4.5 Lentils

Lentils (Lens culinaris L.) is one of the oldest crops cultivated by humans and the most consumed leguminous seeds in the world together with peas (Pisum sativum L.), chickpeas (Cicer arietinum L.) and common beans (Phaseolus vulgaris L.). Lentils are not only contains high amount of macronutrients, such as protein, fatty acids, and carbohydrates, but also contain phytochemicals, such as phenolic acids, flavonols, saponin, phytic acid, and condensed tannin, which can be used as a source of antioxidant [64]. Some studies about lentils have shown that the phenolic contents and antioxidant capacity of lentils was one of the highest among the other leguminoseae family [32,65-67].

Lentils are generally canned or dry-packaged for retail sale or processed into flour [67,68]. It used in soups, stews, salads, snacks, and vegetarian dishes. It may be also be used as a meat substitute or extender due to their high protein content [68]. Lentils flour can be used as gluten-free ingredient to be added in bread, cake, and baby food formulation. The variety of lentils can be represented by their seed color which ranged from yellow to red-orange, green, tan, brown, and black, as a solid or speckled in color, while the cotyledon is red, yellow, or green. The diversity of lentils phenotype indicated the intricate phytochemical characteristic and bioactivities among lentil varieties [64,68]. The color differences between lentils indicated that several pigments such as anthocyanins may be existed in lentils. A research that investigated the anthocyanin content of 11 lentil grown in northern part of USA, showed that the French Green lentil which have greenish brown/yellow seed coat exhibit much higher anthocyanin content (665.6 µg/g) than the Pardina (157.3 µg/g) that have greyish brown/yellow seed coat [30]. The anthocyanin content of the other lentil varieties were undetectable by HPLC, but still had the relatively high content of total flavonoid which reflected in their antioxidant assay [30]. The antioxidant activity were significantly differed amongst the various legume extract [32]. The result proved that lentils had the highest total phenolic content, total antioxidant capacity, DPPH scavenging activity, and total reducing power compared to other legumes (Table 8.6). The total antioxidant capacity, DPPH scavenging activity and total reducing power were positively correlated with total phenolic content. The scavenging effects of the legume extract on the 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) were shown in Fig. 8.2. Bioactive compounds in lentils that responsible for the high ability to act as antioxidant are the phenolic compounds, including procyanidins (69%), flavonols (17%), flavanones (5%), hydroxybenzoic (5%) and hydroxycinnamates acids (4%) [67].

Three different parts were recognized in the legume seeds: seed coats or testa, cotyledon, and embryonic axis which represent 10%, 89%, and 1%, respectively of the seed content [71]. The cotyledon consists the major supply substances and non-flavonoid compounds, which is primarily proteins and carbohydrates, while in the seed coat or testa are located the majority of flavonoid.
TABLE 8.6 Total Antioxidant Activity of Different Legume Grain

<table>
<thead>
<tr>
<th>Legume grain</th>
<th>Total phenolic content (mg/g)</th>
<th>Total antioxidant capacity (U/g)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinto bean</td>
<td>33.4 ± 3.0</td>
<td>567 ± 93</td>
<td>Zhao et al. [32]</td>
</tr>
<tr>
<td>Cowpea</td>
<td>15.2 ± 0.7</td>
<td>222 ± 26</td>
<td></td>
</tr>
<tr>
<td>Baby lima beans</td>
<td>9.5 ± 1.9</td>
<td>116 ± 32</td>
<td></td>
</tr>
<tr>
<td>Lentils</td>
<td>47.6 ± 5.3</td>
<td>721 ± 51</td>
<td></td>
</tr>
<tr>
<td>Chickpea</td>
<td>21.9 ± 2.8</td>
<td>648 ± 18</td>
<td></td>
</tr>
<tr>
<td>Small red beans</td>
<td>45.7 ± 1.8</td>
<td>622 ± 32</td>
<td></td>
</tr>
<tr>
<td>Red kidney beans</td>
<td>56.7 ± 9.3</td>
<td>781 ± 51</td>
<td></td>
</tr>
<tr>
<td>Black kidney beans</td>
<td>32.9 ± 0.1</td>
<td>601 ± 12</td>
<td></td>
</tr>
<tr>
<td>Navy beans</td>
<td>11.6 ± 0.01</td>
<td>215 ± 28</td>
<td></td>
</tr>
<tr>
<td>Mung beans</td>
<td>26.7 ± 1.4</td>
<td>304 ± 23</td>
<td></td>
</tr>
<tr>
<td>Pigeon Pea</td>
<td>0.73</td>
<td>52.1%</td>
<td></td>
</tr>
<tr>
<td>Yellow Pea</td>
<td>3.45</td>
<td>10.36 µmol TE/g</td>
<td>Osemieh et al. [70]</td>
</tr>
<tr>
<td>Green Pea</td>
<td>0.65-0.99</td>
<td>1.73-9.95 µmol TE/g</td>
<td>Xu et al. [18]</td>
</tr>
<tr>
<td>Adzuki beans</td>
<td>90</td>
<td>1.76 µmol</td>
<td>Amarowicz et al. [39]</td>
</tr>
<tr>
<td>Faba beans</td>
<td>16.98-67.47</td>
<td>0.88 µmol Trolox/mg</td>
<td>Amarowicz et al. [39]; Chaieb et al. [79]</td>
</tr>
</tbody>
</table>

* Expressed as mg GAE (Gallic Acid Equivalent)/100g dried beans.

Antioxidant activity of lentils was positively correlated with their phenolic content [64]. That might be developed as an ingredient of functional foods. Lentils proceed to form micronized flakes can be a promising ingredient to replace oats in snack bar formulations due to its nutritional benefit [72]. Recent research showed that extrusion processing on lentil flour fiber-enriched formulation could increase polyphenol fraction [73]. Extrusion process may hydrolyze polyphenol bounds to fiber and protein which may lead to the increase of antioxidant capacity and bioaccessibility. The antioxidant activities of functional components in food product were depended not only on the level of the bioactive compound, but also the composition of the bioactive compound. The antioxidant activity of extruded flour samples which determined using DPPH assay exhibited higher values than the non-extruded flour samples. Extrusion promoted an increase in soluble fiber, total phenolic, hydroxycinnamic, and hydroxybenzoic acids in the lentil-based, fiber-enriched analyzed flours. The flour can be a good alternative to create a functional food with a balance nutritional and phytochemical composition. Those results confirmed the potential of lentils to be used as functional food ingredients. However, research on the effect of lentils consumption in both raw and processed form in preventing degenerative diseases should be intensified in order to evaluate the beneficial effects of lentil’s consumption.

FIG. 8.2 Scavenging activity of the legume extract on the 1,1-diphenyl-2-picryl-hydradyl radical (DPPH) as measured by Zhao et al. [32].

I. OVERVIEW OF POLYPHENOLS AND HEALTH
5 CONCLUSION

Anthocyanin are predominantly found in the seed coat of dark colored legumes such as black soybean, common bean, cowpea, peanut, and lentils. Among other anthocyanin, cyanidin 3-glucoside is the major anthocyanin found in legumes. Beside the high antioxidant activity, anthocyanin from legumes have been reported exhibit anti-hypertension, anti-inflammatory, anticarcinogenic, anti-tumor, and antimutagenic activities. It also enhances spatial memory, enhances cognition, and inhibits LDL oxidation. Increase the consumption of legumes for human daily diet should be recommended due to their beneficial properties for health. Moreover, further research on the application or incorporation of legumes in snacks or other food products in industrial scale should be intensified in order to optimized the intake of anthocyanin and other bioactive compound in legumes.

References

[28] Zhang X, Shen Y, Prinyaawiwatkul W, King MJ, Xu Z. Comparison of the activities of hydrophilic anthocyanins and lipophilic tocoids in...

[29] Chen PX, Tang Y, Maroone MF, Pauls PK, Zhang B. Characterization of free, conjugated and bound phenolics and lipoiphilic antioxidant in regular- and non-darkening cranberry beans (Phaseolus vulgaris L.). Guelph Food Research Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, State Key Laboratory of Food Science and Technology, Nanchang University, Food Chem 2015; Available from: https://doi.org/10.1016/j.foodchem.2015.03.100.

8. ANTIOXIDANT ACTIVITY OF ANTHOCYANINS IN COMMON LEGUME GRAINS

In plants, the production of anthocyanins is regulated by environmental and genetic factors. Anthocyanins are secondary metabolites that are synthesised from the amino acid phenylalanine. Their biosynthesis is influenced by factors such as light, temperature, and water availability. The flavonoid family includes anthocyanins, which are involved in defense mechanisms, cell signaling, and nutrition. In addition, anthocyanins have a high antioxidant activity, which is due to the presence of hydroxyl groups in the B-ring of the flavonoid backbone. The flavonoid profile of plants is determined by the species, cultivar, environmental conditions, and postharvest handling. Anthocyanins are found in a variety of plant tissues, including fruits, flowers, and leaves.

References: