BAB 5
SIMPULAN DAN SARAN

5.1 Simpulan
Berdasarkan analisis data maka dapat disimpulkan pemberian diet rendah magnesium:
1. Menurunkan jumlah makrofag pada tikus perlakuan dibandingkan dengan tikus kontrol.
2. Menurunkan kadar TNF-α pada tikus perlakuan dibandingkan dengan tikus kontrol.

5.2 Saran
1. Mengetahui jenis peradangan (akut, sub akut, atau kronis) yang terjadi selama 2 bulan perlakuan akibat diet rendah magnesium.
2. Menentukan jumlah bakteri *Staphylococcus aureus* yang disuntikkan agar dapat menyebabkan inflamasi.
3. Pemeriksaan jumlah makrofag dilakukan dengan menggunakan metode lain seperti *Automed hematology analyzer*.
DAFTAR PUSTAKA

Biolegend, 2012, Legend Max ELISA Kit, USA

Corwin., E.J, 2009, Buku Patofisiologi, EGC, Jakarta, 752

Hedrich, 2006, The Laboratory Mouse, Elsevier. USA

McCarthy, J.T and Kumar R., 1993, Divalent Cation Metabolism : Magnesium, Departement of Nephrology, Mayo Clinic and Foundation, Rochester

Saris W. H. 2000, Randomized controlled trial of changes in dietary carbohydrate/ fat ratio and simple vs complex carbohydrates on body weight and blood lipids: the CARMEN study. The Carbohydrate Ratio Management in European National diets,

Song,W., Manson, J.E., Buring, J.E. & Liu, S, 2004, *Dietary Magnesium Intake in Relation to Plasma Insulin Levels and Risk of Type 2 Diabetes in Women.* Diabetes Case, 27, 59-64

Widodo, W, 2006, **Pengantar Ilmu Nutrisi Ternak tahun**, Universitas Muhammadiyah Malang

Zainuddin, M., 2000, **Metodologi Penelitian**, Fakultas Farmasi Universitas Airlangga, Surabaya, 52-54
LAMPIRAN A
PENENTUAN JUMLAH MAKROFAG

Preparasi Larutan Turk

Komposisi dari Larutan Turk adalah sebagai berikut :

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Konsentrasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asam asetat glasial</td>
<td>3 ml</td>
</tr>
<tr>
<td>Larutan gentian violet 1 %</td>
<td>1 ml</td>
</tr>
<tr>
<td>Aquades</td>
<td>ad 100 ml</td>
</tr>
</tbody>
</table>

Cara pembuatan larutan Turk :
Larutan gentian violet 1 % diukur sebanyak 1 ml, lalu asam asetat glasial diukur sebanyak 3 ml. Kedua bahan dicampur di dalam beaker glass 100 ml. Kemudian ditambahkan aquades ad 100 ml, aduk hingga homogen dan disaring sebelum digunakan (PT. Onemed).

Penentuan Jumlah Makrofag

Cairan peritoneum diambil dengan menggunakan pipet lekosit sampai tanda 0,5. Lalu ujung pipet diletakkan secara vertikal dan larutan Turk ditambahkan secara perlahan sampai tanda 11. Larutan di campur dengan memutar bolak-balik pipet lekosit dan buang 3 tetes pertama. Bersihkan hemositometer dengan menggunakan etanol 70%. Pipet dipegang dengan posisi vertikal dengan jari telunjuk menutup puncak pipet, lalu ujung pipet diletakkan pada tepi kamar hitung dan biarkan cairan mengalir di bawah gelas penutup sampai memenuhi kamar hitung.
Kemudian cairan peritoneum dibiarkan 1 menit di dalam kamar hitung (gambar) sebelum diperiksa jumlah makrofag. Makrofag dihitung dengan menggunakan mikroskop pada pembesaran 40 X obyektif. Jika terdapat sel yang menempel pada garis batas, maka sel yang dihitung hanya sel yang berada di bidang kiri atas sedangkan yang kanan bawah tidak perlu dihitung, ataupun juga sebaliknya (Swenson, 1984).

Cara penghitungan jumlah makrofag adalah sebagai berikut :

Jumlah sel makrofag x koreksi isi x koreksi pelarut

Koreksi isi dari 4 bidang adalah 2,5. Karena darah dilarutkan pada perbandingan 1:20, maka koreksi pelarut adalah 20. Dimana untuk hasil
yang akurat ke-4 kolom tersebut harus mempunyai jumlah sel makrofag yang tidak berbeda jauh yaitu tidak lebih dari 10 sel (Davidsohn and Henry 1974).
LAMPIRAN B
PENENTUAN KADAR TNF-α

1. Reagen, sampel dan standar disimpan pada suhu -20°C
2. Preparasi reagen, sampel dan standar pada suhu ruang (18-25°C) sebelum digunakan.
3. Pengenceran standar dilakukan dengan persiapan 500µl dari 500 pg/ml top standard dengan mengencerkan 12,5µl standard stock solution ke dalam 487,5µl Assay Buffer A, kemudian pengenceran 2 kali sebanyak 6 seri dilakukan dari 500 pg/ml top standard di tabung yang berbeda, menggunakan Assay Buffer A sebagai pengencer. Jadi, konsentrasi TNF-alpha yang ada di tabung adalah 500 pg/ml, 250 pg/ml, 125 pg/ml, 62,5 pg/ml, 31,3 pg/ml, 15,6 pg/ml, dan 7,8 pg/ml. Assay Buffer A bertindak sebagai standar nol (0 pg/ml).
4. Plate dicuci sebanyak 4 kali dengan 300 µl 1 x Wash Buffer untuk setiap sumuran dan buffer yang tertinggal dibuang dengan cara menepuk plate yang terbalik pada selembar tissue.
5. Pengukuran sampel serum/plasma dilakukan dengan menambahkan 50 µl matriks A ke dalam sumuran kolom 1 dan 2 yang akan mengandung pengenceran standard. Kemudian tambahkan standard dilution ke dalam kolom 1 dan 2 yang telah diisi matrix A. Assay Buffer A sebanyak 50 µl ditambahkan ke dalam sumuran kolom 3-10 yang akan mengandung sampel. Plasma yang telah diencerkan sebanyak 50µl ditambahkan ke dalam sumuran yang mengandung Assay Buffer A.
6. Plate ditutup dengan plate sealer yang ada dalam kit dan diinkubasi pada temperatur ruang selama 2 jam dengan shaking (200 rpm).
7. Setelah inkubasi 2 jam, isi di dalam sumuran dibuang, kemudian plate dicuci dengan 1x Wash Buffer seperti pada tahap 4.
8. Solution antibodi TNF-α sebanyak 100 µl ditambahkan ke dalam setiap sumuran dan diinkubasi pada suhu ruang selama 1 jam dengan shaking.
10. Solution Avidin-HRP D 100 µl ditambahkan ke dalam setiap sumuran, plate ditutup dan diinkubasi pada suhu ruang selama 30 menit dengan shaking.
11. Setelah inkubasi, isi di dalam sumuran dibuang, kemudian plate dicuci dengan 1x wash buffer seperti pada tahap 4. Untuk pencucian terakhir ini, sumuran direndam dalam 1x wash buffer selama 30 detik sampai 1 menit untuk setiap sumuran. Hal ini akan membantu meminimalisir background.
12. Substrat solution F sebanyak 100 µl ditambahkan ke setiap sumuran dan diinkubasi selama 15 menit di dalam gelap. Sumuran yang mengandung TNF-α tikus dalam sumuran akan mengalami perubahan warna menjadi biru berbanding lurus dengan konsentrasi.
13. Selanjutnya ditambahkan 100 µl stop solution (2N asam sulfat) ke dalam setiap sumuran, warna solution akan berubah dari biru menjadi kuning.
14. Kemudian dibaca pada microplate reader dengan panjang gelombang 450 nm (dalam 30 menit), pembacaan dikoreksi pada panjang gelombang 570 nm (Biolegend, 2012).
<table>
<thead>
<tr>
<th>Nutrisi</th>
<th>Masa pertumbuhan, kehamilan dan laktasi</th>
<th>Pemeliharaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein (as ideal protein)</td>
<td>12.00%</td>
<td>4.20%</td>
</tr>
<tr>
<td>Fat c</td>
<td>5.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td>Digestible energy</td>
<td>3800.00 kcal/gm</td>
<td>3800.00 kcal/gm</td>
</tr>
<tr>
<td>Minerals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>0.50%</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>0.05%</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.04%</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.40%</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.36%</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>0.05%</td>
<td></td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.03%</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>0.30 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>5.00 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>1.00 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Iodine</td>
<td>0.15 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>35.00 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>50.00 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>12.00 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Vitamin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>4000.00 IU/kg</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1000.00 IU/kg</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>30.00 IU/kg</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>50.00 gm/kg</td>
<td></td>
</tr>
<tr>
<td>Riboflavin</td>
<td>3.00 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Thiamin</td>
<td>4.00 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₆</td>
<td>6.00 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₁₂</td>
<td>50.00 µg/kg</td>
<td></td>
</tr>
</tbody>
</table>

* From National Research Council (1978).
LAMPIRAN D
Komposisi Pakan Standar Tikus BR-1 (PT. Charoen Pokphand Indonesia)

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein kasar</td>
<td>21 – 23</td>
</tr>
<tr>
<td>Lemak kasar</td>
<td>5</td>
</tr>
<tr>
<td>Serat kasar</td>
<td>5</td>
</tr>
<tr>
<td>Kadar abu</td>
<td>7</td>
</tr>
<tr>
<td>Kalsium</td>
<td>0,9</td>
</tr>
<tr>
<td>Fosfor</td>
<td>0,6</td>
</tr>
<tr>
<td>Air</td>
<td>13</td>
</tr>
</tbody>
</table>

Komposisi mineral-premix (Eka Farma, Semarang)

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalsium</td>
<td>43-45</td>
</tr>
<tr>
<td>Fosfor</td>
<td>10-12</td>
</tr>
<tr>
<td>Ferrum</td>
<td>4,40</td>
</tr>
<tr>
<td>Cuprum</td>
<td>0,044</td>
</tr>
<tr>
<td>Mangan</td>
<td>0,397</td>
</tr>
<tr>
<td>Iodium</td>
<td>0,002</td>
</tr>
<tr>
<td>NaCl</td>
<td>10</td>
</tr>
<tr>
<td>Magnesium</td>
<td>3,30</td>
</tr>
<tr>
<td>Zink</td>
<td>0,50</td>
</tr>
<tr>
<td>Cyanocobalamin</td>
<td>1,545 mcg</td>
</tr>
</tbody>
</table>
LAMPIRAN E

HASIL PENIMBANGAN BERAT BADAN TIKUS

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Minggu 1</th>
<th>Minggu 2</th>
<th>Minggu 3</th>
<th>Minggu 4</th>
<th>Minggu 5</th>
<th>Minggu 6</th>
<th>Minggu 7</th>
<th>Minggu 8</th>
<th>Minggu 9</th>
<th>Minggu 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol 1</td>
<td>179</td>
<td>231</td>
<td>253</td>
<td>274</td>
<td>304</td>
<td>311</td>
<td>319</td>
<td>341</td>
<td>352</td>
<td>360</td>
</tr>
<tr>
<td>Kontrol 2</td>
<td>206</td>
<td>233</td>
<td>242</td>
<td>233</td>
<td>270</td>
<td>277</td>
<td>284</td>
<td>298</td>
<td>305</td>
<td>310</td>
</tr>
<tr>
<td>Kontrol 3</td>
<td>171</td>
<td>197</td>
<td>189</td>
<td>196</td>
<td>232</td>
<td>241</td>
<td>251</td>
<td>261</td>
<td>266</td>
<td>275</td>
</tr>
<tr>
<td>Kontrol 4</td>
<td>222</td>
<td>254</td>
<td>263</td>
<td>276</td>
<td>294</td>
<td>298</td>
<td>304</td>
<td>316</td>
<td>326</td>
<td>341</td>
</tr>
<tr>
<td>Kontrol 5</td>
<td>217</td>
<td>221</td>
<td>237</td>
<td>256</td>
<td>272</td>
<td>277</td>
<td>283</td>
<td>293</td>
<td>299</td>
<td>313</td>
</tr>
<tr>
<td>Kontrol 6</td>
<td>196</td>
<td>206</td>
<td>218</td>
<td>234</td>
<td>238</td>
<td>242</td>
<td>247</td>
<td>260</td>
<td>276</td>
<td>279</td>
</tr>
<tr>
<td>Kontrol 7</td>
<td>238</td>
<td>238</td>
<td>243</td>
<td>260</td>
<td>282</td>
<td>286</td>
<td>291</td>
<td>302</td>
<td>308</td>
<td>320</td>
</tr>
<tr>
<td>Kontrol 8</td>
<td>222</td>
<td>233</td>
<td>249</td>
<td>260</td>
<td>276</td>
<td>287</td>
<td>299</td>
<td>310</td>
<td>318</td>
<td>324</td>
</tr>
</tbody>
</table>

Rerata ± SD

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rerata</td>
<td>23,02</td>
<td>18,18</td>
<td>23,30</td>
<td>26,54</td>
<td>25,00</td>
<td>24,77</td>
<td>24,93</td>
<td>27,17</td>
<td>27,29</td>
<td>28,61</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>Minggu 1</td>
<td>Minggu 2</td>
<td>Minggu 3</td>
<td>Minggu 4</td>
<td>Minggu 5</td>
<td>Minggu 6</td>
<td>Minggu 7</td>
<td>Minggu 8</td>
<td>Minggu 9</td>
<td>Minggu 10</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Rendah Mg 1</td>
<td>241</td>
<td>223</td>
<td>233</td>
<td>242</td>
<td>257</td>
<td>260</td>
<td>265</td>
<td>283</td>
<td>282</td>
<td>298</td>
</tr>
<tr>
<td>Rendah Mg 2</td>
<td>208</td>
<td>262</td>
<td>270</td>
<td>268</td>
<td>293</td>
<td>298</td>
<td>303</td>
<td>309</td>
<td>320</td>
<td>327</td>
</tr>
<tr>
<td>Rendah Mg 3</td>
<td>186</td>
<td>216</td>
<td>240</td>
<td>251</td>
<td>276</td>
<td>279</td>
<td>289</td>
<td>304</td>
<td>309</td>
<td>324</td>
</tr>
<tr>
<td>Rendah Mg 4</td>
<td>237</td>
<td>252</td>
<td>268</td>
<td>283</td>
<td>298</td>
<td>305</td>
<td>313</td>
<td>319</td>
<td>319</td>
<td>322</td>
</tr>
<tr>
<td>Rendah Mg 5</td>
<td>193</td>
<td>210</td>
<td>227</td>
<td>249</td>
<td>259</td>
<td>264</td>
<td>270</td>
<td>290</td>
<td>304</td>
<td>317</td>
</tr>
<tr>
<td>Rendah Mg 6</td>
<td>220</td>
<td>249</td>
<td>264</td>
<td>261</td>
<td>282</td>
<td>288</td>
<td>296</td>
<td>309</td>
<td>331</td>
<td>334</td>
</tr>
<tr>
<td>Rendah Mg 7</td>
<td>209</td>
<td>231</td>
<td>235</td>
<td>242</td>
<td>266</td>
<td>274</td>
<td>282</td>
<td>295</td>
<td>303</td>
<td>311</td>
</tr>
<tr>
<td>Rendah Mg 8</td>
<td>246</td>
<td>247</td>
<td>257</td>
<td>292</td>
<td>318</td>
<td>325</td>
<td>332</td>
<td>347</td>
<td>351</td>
<td>370</td>
</tr>
<tr>
<td>Rerata ± SD</td>
<td>217,5±</td>
<td>236,25±</td>
<td>249,25±</td>
<td>261±</td>
<td>281,12±</td>
<td>286,62±</td>
<td>293,75±</td>
<td>307±</td>
<td>314,87±</td>
<td>325,37±</td>
</tr>
<tr>
<td></td>
<td>22,37</td>
<td>18,86</td>
<td>17,35</td>
<td>18,74</td>
<td>21,08</td>
<td>21,97</td>
<td>22,28</td>
<td>19,89</td>
<td>20,64</td>
<td>21,07</td>
</tr>
</tbody>
</table>
LAMPIRAN F

SELISIH BERAT BADAN TIKUS (minggu ke 10 dan minggu 1)

<table>
<thead>
<tr>
<th>PERLAKUAN</th>
<th>Berat Badan (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol 1</td>
<td>129</td>
</tr>
<tr>
<td>kontrol 2</td>
<td>77</td>
</tr>
<tr>
<td>kontrol 3</td>
<td>78</td>
</tr>
<tr>
<td>kontrol 4</td>
<td>87</td>
</tr>
<tr>
<td>kontrol 5</td>
<td>92</td>
</tr>
<tr>
<td>kontrol 6</td>
<td>73</td>
</tr>
<tr>
<td>kontrol 7</td>
<td>82</td>
</tr>
<tr>
<td>kontrol 8</td>
<td>91</td>
</tr>
<tr>
<td>Rerata ± SD</td>
<td>88,62 ± 17,67</td>
</tr>
<tr>
<td>Rendah Mg 1</td>
<td>75</td>
</tr>
<tr>
<td>Rendah Mg 2</td>
<td>65</td>
</tr>
<tr>
<td>Rendah Mg 3</td>
<td>108</td>
</tr>
<tr>
<td>Rendah Mg 4</td>
<td>70</td>
</tr>
<tr>
<td>Rendah Mg 5</td>
<td>107</td>
</tr>
<tr>
<td>Rendah Mg 6</td>
<td>85</td>
</tr>
<tr>
<td>Rendah Mg 7</td>
<td>80</td>
</tr>
<tr>
<td>Rendah Mg 8</td>
<td>123</td>
</tr>
<tr>
<td>Rerata ± SD</td>
<td>89,12 ± 20,94</td>
</tr>
</tbody>
</table>

Perhitungan persentase peningkatan berat badan:

a. **Perlakuan Kontrol**

\[
\text{Berat badan tikus minggu ke 10} - \text{Berat badan tikus ke 1} \times 100 \%
\]

\[
\frac{315.25 - 226.62}{315.25} \times 100\% = 28.11
\]
b. Perlakuan rendah magnesium

\[
\frac{\text{Berat badan tikus minggu ke 10} - \text{Berat badan tikus ke 1}}{\text{berat badan tikus minggu terakhir}} \times 100\% \\
\frac{325.37 - 236.25}{325.37} \times 100\% = 27.39\%
\]
Lampiran G

Hasil Analisis Statistik Independent T-Test Berat Badan Tikus Wistar Jantan Kelompok Kontrol dan Perlakuan Diet Rendah Magnesium

Group Statistics

<table>
<thead>
<tr>
<th>kelompok</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB kontrol</td>
<td>8</td>
<td>88.63</td>
<td>17.671</td>
<td>6.248</td>
</tr>
<tr>
<td>Rendah Mg</td>
<td>8</td>
<td>89.13</td>
<td>20.945</td>
<td>7.405</td>
</tr>
</tbody>
</table>

Independent Samples Test

<table>
<thead>
<tr>
<th></th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
</tr>
<tr>
<td></td>
<td>Equal variances not assumed</td>
<td>-</td>
</tr>
<tr>
<td>PERLAKUAN</td>
<td>Jumlah makrofag (sel/mm³)</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>kontrol 1</td>
<td>3150</td>
<td></td>
</tr>
<tr>
<td>kontrol 2</td>
<td>2900</td>
<td></td>
</tr>
<tr>
<td>kontrol 3</td>
<td>2800</td>
<td></td>
</tr>
<tr>
<td>kontrol 4</td>
<td>2350</td>
<td></td>
</tr>
<tr>
<td>kontrol 5</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>Rerata ± SD</td>
<td>2840±320,90</td>
<td></td>
</tr>
<tr>
<td>Rendah Mg 1</td>
<td>2350</td>
<td></td>
</tr>
<tr>
<td>Rendah Mg 2</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Rendah Mg 3</td>
<td>2400</td>
<td></td>
</tr>
<tr>
<td>Rendah Mg 4</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>Rendah Mg 5</td>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>Rerata ± SD</td>
<td>1740±593,08</td>
<td></td>
</tr>
</tbody>
</table>

Perhitungan persentase penurunan jumlah sel makrofag diet rendah magnesium dibandingkan dengan kontrol:

\[
\frac{\text{sel makrofag kontrol} - \text{sel makrofag diet rendah Mg}}{\text{sel makrofag kontrol}} \times 100\% = \frac{2840 - 1740}{2840} \times 100\% = 38,73\%
\]
HASIL ANALISIS STATISTIK *INDEPENDENT T-TEST* JUMLAH MAKROFAG TIKUS WISTAR JANTAN KELOMPOK KONTROL DAN PERLAKUAN DIET RENDAH MAGNESIUM

<table>
<thead>
<tr>
<th>kelompok</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>makrofag</td>
<td>5</td>
<td>2840.00</td>
<td>302.903</td>
<td>135.462</td>
</tr>
<tr>
<td>rendah Mg</td>
<td>5</td>
<td>1740.00</td>
<td>593.085</td>
<td>265.236</td>
</tr>
</tbody>
</table>

Independent Samples Test

<table>
<thead>
<tr>
<th>Levene’s Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95% Confidence Interval of the Difference</td>
</tr>
<tr>
<td>F</td>
<td>Sig.</td>
</tr>
<tr>
<td>makrofag</td>
<td>Equal variances assumed</td>
</tr>
</tbody>
</table>
LAMPIRAN J

LINEARITAS BAKU STANDAR TNF-α

<table>
<thead>
<tr>
<th>Konsentrasi (pg/ml)</th>
<th>Absorbansi Standar</th>
<th>Rerata±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rep 1</td>
<td>Rep 2</td>
</tr>
<tr>
<td>500</td>
<td>3,977</td>
<td>3,118</td>
</tr>
<tr>
<td>125</td>
<td>0,826</td>
<td>1,021</td>
</tr>
<tr>
<td>62,5</td>
<td>0,553</td>
<td>0,649</td>
</tr>
<tr>
<td>31,3</td>
<td>0,311</td>
<td>0,382</td>
</tr>
<tr>
<td>15,6</td>
<td>0,246</td>
<td>0,278</td>
</tr>
<tr>
<td>7,8</td>
<td>0,207</td>
<td>0,212</td>
</tr>
<tr>
<td>0</td>
<td>0,167</td>
<td>0,185</td>
</tr>
</tbody>
</table>

Grafik Absorbansi Standar

\[y = 0.0068x + 0.1495 \]

\[R^2 = 0.9992 \]
LAMPIRAN K

KADAR TNF-α KELOMPOK KONTROL

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Absorbansi 1</th>
<th>Absorbansi 2</th>
<th>Absorbansi rata-rata</th>
<th>Kadar (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 1</td>
<td>0,201</td>
<td>0,221</td>
<td>0,21</td>
<td>9,08</td>
</tr>
<tr>
<td>K 2</td>
<td>0,309</td>
<td>0,321</td>
<td>0,31</td>
<td>24,45</td>
</tr>
<tr>
<td>K 3</td>
<td>0,269</td>
<td>0,212</td>
<td>0,24</td>
<td>13,44</td>
</tr>
<tr>
<td>K 4</td>
<td>0,297</td>
<td>0,28</td>
<td>0,28</td>
<td>20,53</td>
</tr>
<tr>
<td>K 5</td>
<td>0,204</td>
<td>0,194</td>
<td>0,19</td>
<td>7,31</td>
</tr>
</tbody>
</table>

Rerata ± SD: 14,96 ± 7,35

KADAR TNF-α KELOMPOK RENDAH MAGNESIUM

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Absorbansi 1</th>
<th>Absorbansi 2</th>
<th>Absorbansi rata-rata</th>
<th>Konsentrasi (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg 1</td>
<td>0,196</td>
<td>0,193</td>
<td>0,19</td>
<td>6,64</td>
</tr>
<tr>
<td>Mg 2</td>
<td>0,225</td>
<td>0,2</td>
<td>0,21</td>
<td>9,30</td>
</tr>
<tr>
<td>Mg 3</td>
<td>0,209</td>
<td>0,195</td>
<td>0,20</td>
<td>7,75</td>
</tr>
<tr>
<td>Mg 4</td>
<td>0,219</td>
<td>0,221</td>
<td>0,22</td>
<td>10,41</td>
</tr>
<tr>
<td>Mg 5</td>
<td>0,204</td>
<td>0,226</td>
<td>0,21</td>
<td>9,67</td>
</tr>
</tbody>
</table>

Rerata ± SD: 8,75 ± 1,52

Perhitungan persentase penurunan kadar TNF-α diet rendah magnesium dibandingkan dengan kontrol:

\[
\frac{\text{rerata kadar kontrol} - \text{rerata kadar diet rendah Mg}}{\text{rerata kadar kontrol}} \times 100\% = \frac{14.96 - 8.75}{14.96} \times 100\% = 41.51\%
\]
LAMPIRAN L

HASIL ANALISIS STATISTIK INDEPENDENT T-TEST KADAR TNF-α TIKUS WISTAR JANTAN
KELOMPOK KONTROL DAN PERLAKUAN DIET RENDAH MAGNESIUM

<table>
<thead>
<tr>
<th>kelompok</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFalpha</td>
<td>5</td>
<td>14.9662</td>
<td>7.35804</td>
<td>3.29062</td>
</tr>
<tr>
<td>rendah Mg</td>
<td>5</td>
<td>8.7594</td>
<td>1.52919</td>
<td>.68388</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>TNFalpha</td>
<td>Equal variances assumed</td>
<td>12.424</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>1.847</td>
<td>4.345</td>
</tr>
</tbody>
</table>
LAMPIRAN M
SURAT SERTIFIKAT TIKUS PUTIH JANTAN

SURAT KETERANGAN

Yang bertanda tangan di bawah ini:

Nama : Hari Soemantoro
NIP : 196302021919031002

Menerangkan bahwa:

Nama : Irene Patricia de Lourdes Loe
Pekerjaan : Mahasiswa

Telah membeli tikus jantan (Rattus norvegicus L.) usia 3 bulan sejumlah 40 ekor dalam kondisi sehat dari Kandang Hewan coba Biokimia Kedokteran FK Unair.
Dennikian surat keterangan ini dibuat agar dapat dipergunakan sebagaimana mestinya.
Atas kerjasama yang baik disampaikan terima kasih.

Surabaya, 19 April 2013

Koordinator

Hari Soemantoro
LAMPIRAN N
SERTIFIKAT ETHICAL CLEARANCE

KOMISI ETIK PENELITIAN
FAKULTAS KEDOKTERAN Hewan UNIVERISTAS AIRLANGGA
Animal Care and Use Committee (ACUC)

KETERANGAN KELAIKAN ETIK
" ETHICAL CLEARENCE"

No : 298-KE

KOMISI ETIK PENELITIAN (ANIMAL CARE AND USE COMMITTEE)
FAKULTAS KEDOKTERAN Hewan UNIVERSITAS AIRLANGGA SURABAYA,
TELAH MEMPELAJARI SECARA SEKSAMA RANCANGAN PENELITIAN YANG
DIUBILKAN, MAKA DENGAN INI MENYATAKAN BAHWA :

PENELITIAN BERJUOL : Pengaruh Diet Tinggi Fruktose Rendah Magnesium
Terhadap Jumlah Makrofla, Nefrofi dan Kadar Slikin
Dalam Darah Tikus Putih

PENELITI UTAMA : Ratna Megawati

UNIT/LEMBAGA/TEMPAT PENELITIAN : Universitas Katolik Widy Mandaia Surabaya

DINYATAKAN : LAIK ETIK

Surabaya, 29 Mei 2013

Mengeluh,
Dekan FKH-Unair.

Prof. Romalis Sidik, Ph.D., dm.
NIP. 105312161978062001

Ketua,

Dr. F. Bimo Astono, M.Kes., Drh.
NIP. 196609201992031003

75