RESEARCH PROJECT

METAL-ORGANIC FRAMEWORK AS
A DRUG CARRIER OF FUROSEMIDE

Submitted by
Yanita Devi NRP. 5203016003
Ignatius Ang NRP. 5203017038

DEPARTMENT OF CHEMICAL ENGINEERING
FACULTY OF ENGINEERING
WIDYA MANDALA CATHOLIC UNIVERSITY SURABAYA
SURABAYA
2019
LETTER OF APPROVAL

Seminar of RESEARCH PROJECT for student with identity below:
Name : Yanita Devi
NRP : 5203016003

has been conducted on 27 May 2019, therefore the student has fulfilled one of several requirements to obtain Bachelor of Engineering degree in Chemical Engineering Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya.

Surabaya, June 12, 2019

Principal Supervisor
Ir. Suryadi Ismadji, M.T., Ph.D.
NIK. 521.93.0198

Co-Supervisor
Felycia Edi Soetaredjo, Ph.D.
NIK. 521.99.0391

Chairman
Shella P. Santoso, S.T., Ph.D.
NIK. 521.17.0971

Secretary
Ir. Suryadi Ismadji, Ph.D.
NIK. 521.93.0198

Committees

Member
Wenny Irawaty, M.T., Ph.D.
NIK. 521.97.0284

Member
Irv. Setiyadi, M.T.
NIK. 521.88.0137

Authorized by

Dean of Engineering Faculty
Ir. Suryadi Ismadji, M.T., Ph.D.
NIK. 521.93.0198

Head of Chemical Engineering Department
Sandy B. Hartono, Ph.D., IPM
NIK. 521.99.0391
LETTER OF APPROVAL

Seminar of **RESEARCH PROJECT** for student with identity below:

Name : Ignatius Ang
NRP : 5203017038

has been conducted on 27 May 2019, therefore the student has fulfilled one of several requirements to obtain **Bachelor of Engineering** degree in Chemical Engineering Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya.

Surabaya, June 12, 2019

Principal Supervisor
Ir. Suryadi Ismadji, M.T., Ph.D.
NIK. 521.93.0198

Co-Supervisor
Felycia Edi Soetaredjo, Ph.D.
NIK. 521.99.0391

Committees

Chairman
Shella P. Santoso, S.T., Ph.D.
NIK. 521.17.0971

Secretary
Ir. Suryadi Ismadji, Ph.D.
NIK. 521.93.0198

Member
Wenny Irawaty, M.T., Ph.D.
NIK. 521.97.0284

Member
Ir. Setiyadi, M.T.
NIK. 521.88.0137

Authorized by
Dean of Engineering Faculty
Ir. Suryadi Ismadji, M.T., Ph.D.
NIK. 521.93.0198

Head of Chemical Engineering Department
Sandy B. Hartono, Ph.D., IPM
NIK. 521.99.0391
COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am
as the student of Widya Mandala Catholic University Surabaya:

Name : Yanita Devi
NRP : 5203016003

agree to transfer the copyright of my research project:

Title:

METAL-ORGANIC FRAMEWORK AS
A DRUG CARRIER OF FUROSEMIDE

To be publish in internet or other media (Digital Library of Widya
Mandala Catholic University Surabaya) for academic purposes
according to copyright law in Indonesia.

Surabaya, June 12, 2019

Author

Yanita Devi
NRP. 5203016003
COPYRIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Catholic University Surabaya:

Name: Ignatius Ang
NRP: 5203017038

agree to transfer the copyright of my research project:

Title: METAL-ORGANIC FRAMEWORK AS A DRUG CARRIER OF FUROSEMIDE

To be publish in internet or other media (Digital Library of Widya Mandala Catholic University Surabaya) for academic purposes according to copyright law in Indonesia.

Surabaya, June 12, 2019

Author

Ignatius Ang
NRP. 5203017038
LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it be known that this research belongs to others, I aware and accept the consequences that this research cannot be used as a requirement to obtain Bachelor of Engineering degree.

Surabaya, June 12, 2019

Student

Yanita Devi
NRP. 5203016003
LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to others, I aware and accept the consequences that this research cannot be used as a requirement to obtain Bachelor of Engineering degree.

Surabaya, June 12, 2019

Student

Ignatius Ang
NRP. 5203017038
Authors give thanks to the Almighty God for all His blessings and mercy, so the Thesis entitled "Metal-Organic Framework as a Drug Carrier of Furosemide" can be completed on time. This thesis is one of the requirements for obtained a Bachelor of Engineering degree in the Chemical Engineering Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya.

With the completion of this thesis, the author would like to thank:
1. Ir. Suryadi Ismadji, M.T., Ph.D., as the Principal Supervisor, who has given lots of guidance and direction;
2. Felycia Edi Soetaredjo, Ph.D., as Co-Supervisor, who has given lots of guidance and direction;
3. Shella P. Santoso, S.T., Ph.D., Wenny Irawaty, M.T., Ph.D., and Ir. Setiyanadi, M.T. as the committees;
4. All lecturers and staff of the Chemical Engineering Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya, all of which cannot be mentioned, directly or not, has helped in writing this thesis;
5. All colleagues inside and outside the Widya Mandala Catholic University Surabaya, who helped complete this thesis;
6. Parents and family of authors who have provided support material and non-material, so author can complete this thesis.

Finally, the authors hope that this thesis can be useful for development in science and technology in the future.

Surabaya, June 12, 2019

Author
ABSTRACT

Recently, pharmaceutical industries have developed more than 40% NCE (New Chemical Entities) to satisfy the needs of rapid treatment toward various diseases. Nevertheless, majority of those developments have several problems for instance low solubility and/or low permeability thus a suitable delivery system is required. Furosemide is a loop diuretic drug with those several problems. To the best of our knowledge, utilizing nanoparticle with tunable porosity such as Metal-Organic Framework (MOF) as drug delivery of Furosemide has yet to be found.

Synthesis of Metal-Organic Framework (MOF) known as MIL-100(Fe) was conducted via non-solvothermal method at room temperature under stirring condition using FeSO$_4$.7H$_2$O, H$_3$BTC, and NaOH as the raw materials. Several experiments were conducted to observe the synthesis, loading, and release behaviors of Furosemide using MIL-100(Fe) as drug carrier. From the results obtained, the optimum molar ratio of NaOH added in the synthesis of MIL-100(Fe) was found to be X=3. The effect of adsorbent dose exhibits a decrease number in the value of q_e and q_t as the mass of adsorbent increases, vice versa. The adsorption kinetic could be represented by the pseudo-first-order model, while the adsorption isotherm fitted well with Langmuir isotherm model. The release of Furosemide from MIL-100(Fe) in PBS at pH 5.8 and 7.4 fitted well with the first-order kinetic and Korsmeyer-Peppas model, respectively, which demonstrated a sustainable release of the drug.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LETTER OF APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>LETTER OF APPROVAL</td>
<td>iii</td>
</tr>
<tr>
<td>COPY RIGHT AGREEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>COPY RIGHT AGREEMENT</td>
<td>v</td>
</tr>
<tr>
<td>LETTER OF DECLARATION</td>
<td>iv</td>
</tr>
<tr>
<td>LETTER OF DECLARATION</td>
<td>iv</td>
</tr>
<tr>
<td>PREFACE</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ix</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>CH. I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>I.1. Background</td>
<td>1</td>
</tr>
<tr>
<td>I.2. Objectives</td>
<td>3</td>
</tr>
<tr>
<td>I.3. Scopes of Research</td>
<td>3</td>
</tr>
<tr>
<td>CH. II LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>II.1. Drug Delivery</td>
<td>5</td>
</tr>
<tr>
<td>II.2. Furosemide</td>
<td>6</td>
</tr>
<tr>
<td>II.3. Metal-Organic Framework (MOF)</td>
<td>8</td>
</tr>
<tr>
<td>II.4. Non-Solvothermal Method</td>
<td>9</td>
</tr>
<tr>
<td>II.5. Adsorption Isotherm and Kinetic</td>
<td>10</td>
</tr>
<tr>
<td>II.6. Release Kinetic</td>
<td>12</td>
</tr>
<tr>
<td>CH. III EXPERIMENTAL METHOD</td>
<td>15</td>
</tr>
<tr>
<td>III.1. Research Layout</td>
<td>15</td>
</tr>
<tr>
<td>III.2. Research Variable</td>
<td>16</td>
</tr>
<tr>
<td>III.3. Materials</td>
<td>17</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1. X-ray diffraction (XRD) of MIL-100(Fe)25
Figure 2. Scanning electron microscope (SEM) image of synthesized MIL-100(Fe), X=3...27
Figure 3. N\textsubscript{2} adsorption-desorption isotherm of synthesized MIL-100(Fe), X=3 ...28
Figure 4. Thermal gravimetric analysis (TGA) of synthesized MIL-100(Fe), X=3 ...29
Figure 5. Schematic illustration indicating the effect of NaOH in the synthesis of MIL-100(Fe) ...30
Figure 6. Effect of NaOH molar ratio on the formation of MIL-100(Fe) ..31
Figure 7. Adsorption kinetic of Furosemide using MIL-100(Fe), X=3, plotted to (a) Pseudo-First (b) Pseudo-Second-Order33
Figure 8. Adsorption isotherm of Furosemide using MIL-100(Fe), X=3, plotted to Langmuir and Freundlich equations35
Figure 9. Release kinetic models of Furosemide from MIL-100(Fe), X=3, at (a) pH 5.8 (b) pH 7.4 ...38
LIST OF TABLES

Table 1. Adsorption kinetic of Furosemide on MIL-100(Fe) 34
Table 2. Adsorption isotherm of Furosemide on MIL-100(Fe) 36
Table 3. Release kinetic models of Furosemide from MIL-100(Fe) ... 40