PROCEEDING
The International Conference
Pharmaceutical Care

NEW DEVELOPMENT OF
PHARMACEUTICAL CARE
IN A PHARMACOGENETIC AND
PHARMACOGENOMIC APPROACH

Theater Dome | University of Muhammadiyah Malang | April 19th 2014
COMMITTEE

THE ORGANIZING COMMITTEE OF INTERNATIONAL CONFERENCE ON "NEW DEVELOPMENT OF PHARMACEUTICAL CARE IN PHARMACOGENETIC AND PHARMACOGENOMIC APPROACH"

Advisory Board : Rector University Muhammadiyah of Malang
Dr. Muhajir Effendy, M.AP

Steering Committee :
1. Dean of Faculty of Health Sciences University Muhammadiyah of Malang
2. Assistant Dean I Of Faculty of Health Sciences University Muhammadiyah of Malang
3. Assistant Dean II Of Faculty of Health Sciences University Muhammadiyah of Malang
4. Assistant Dean III Of Faculty of Health Sciences University Muhammadiyah of Malang
5. Expert Staff of Department of Pharmacy, Faculty of Health Sciences University Muhammadiyah of Malang

Technical Committee :

Chairperson : Nailis Syifa' S.Farm., Apt., M.Sc
Secretary : Siti Rofida., S.Si., Apt., M.Farm
Heru Prabowo Hadi., S.Farm., Apt
Treasurer : Dra. Uswatun Chasanah., Apt., M.Kes

Sub-committee
Secretariat
Arina Swasika., S.Farm., Apt
Agustin Rafikayanti., S.Farm
Engrid Juni Astuti., S.Farm., Apt
Susi Enny

Founding And Sponsorship
Sovia Aprina B. S.Farm., Apt., M.Si
Drs. Lilik Yusetyani., Apt., Sp.FRS
Rizal Andriyono., S.Farm., Apt

Proceeding Editors and Event Organizer
Hidajah Rachmawati., S.Si., Apt., Sp.FRS
Siti Rofida., S.Si., Apt., M.Farm
Nikmatul Ikhrom E.J., S.Farm., M.FarmKlim
Asri Julia Sukmaningrum., S.Farm., Apt
Dyan Retno., S. Farm., Apt.
Samiyah Abdullah., S. Farm., Apt.

Logistic
Sekar Uli Fatmarini., S.Farm., Apt
Akhamad Sobrun Jamil., S.Si.,MP
Bunga Prahesti Septiyani
Promotion and Public Relation
Ahmad Firdiansyah, S.Farm., Apt
Sendi Lia Yunita, S.Farm., Apt
Raditya Weka. Nugraheni, S.Farm., Apt

Accommodation, Documentation and Conference Services
Lukman Hakim
Ferdiansyah
Ayu Evitasari
Dani Putra
TABLE OF CONTENTS

Sub-Chronic Oral Toxicity Profiles of *Curcuma xanthorrhiza*, *Curcuma longa* and *Zingiber officinale* CV. Rubrum Combination Based On Liver Parameters in Rats
H. Ekowati, Sarmoko, J. Setyono ... 1

Antioxidant Activity of Kombucha with Gambier Substrate Compared to Ascorbic Acid
N.P.E. Leliqia, N.L.D. Rupadani, N.M.P. Susanti ... 8

Preparation and Evaluation of Co-Processed Excipient Fully Pregelatinized Cassava Starch and Acacia Gum as a Matrix of Paracetamol Tablet
C.I.S. Arisanti, A. Wiradewi ... 12

Ethanol Extracts of *Sauropus androgynus* (L.) Merr. Activity Antihyperlipidemia of High Fat Diet-Fed Rats
N. K. Warditiani, N. M. P. Susanti, I N. K. Widjaja, I N. A. Budiman 20

Comparison Between the Antibacterial Activities of the Crude Extract and the Fraction of *Salam (Syzygium polyanthum* (Wight) Walp.) Stem Bark Against *Shigella flexneri*
N.L.P.V. Paramita, Wahyono, E.P. Setyowati ... 25

Phytochemical Chromatogram Profiling of Methanolic Extract Mangosteen Pericarp with TLC-Spectrophotodensitometry
N.P.L. Laksmiani, I M.A.G Wirasuta, M.I. Iswandi, L.N.S. Utami, F.P. Karso, P.R. Harfa ... 29

Co-Processing Method Using Acacia Gum to Improve the Physical Properties of Cassava Starch
Prasetia, Jemmy A, Puspita, P.A.P, Arisanti, C.I.S. ... 35

Effect of Variation Concentration Cassava Starch (*Garcinia mangostana* L.) as Binder in Troches Mangosteen Peel Extract
I G. N. A. Dewantara, N. L. P D. Wijayanti .. 39

Assessment of Hepatoprotective Effect of Polyherbal Combination of *Phyllanthus niruri* (Meniran), *Curcuma xanthorrhiza* (Wild Ginger) and *Curcuma Longa* (Turmeric) Against Liver Dysfunction Due to Anti-Tuberculosis Drugs
Ema Rachmawati, Arif Nurrochmad, Ika Puspita Sari .. 44

Insulin Signaling Pathway Activity of Bungur (*Lagerstroemia Speciosa* [L.] Pers) Ethanolic Leaves Extract in Alloxan Induced Diabetic Rats
Angelica Kresnamurti, Junaidi Khotib, Bambang Prajogo EW 48
Pharmacist Home Care (PHC) on Patients with Diabetes Mellitus Type 2
N.M.P. Susanti, N.M.Suryani, I.M.A.G. Wirasuta

TLC-Densitometer Profile and Antiulcer Activity Assay of Ethanol Extract of Binahong Leaves (Anredora scandens (L.) Moq.) in Sprague dawley Strain Male Rats
P.O. Samirana, N.P.E. Leliqia, N.P. Ariantri

Correlation Between Parent's Knowledge and Attitude to BCG Vaccination Compliance in Primary Health Care of Malang
F. Saufika, B. Sidharta, A. L. Hariadini

Antidiabetic Activity of Aegle marmelos Leaves on Alloxan Induced Diabetic Rat
Diana Holidah, Fifteen Aprila Fajrin, Siti Muslichah

Effectiveness Comparation of Intravenous Ceftriaxone Monotherapy VS Intravenous Ceftriaxone Plus Ciprofloxacin Combination in Hospitalized Pneumonia
A. Machlaurin, Satibi, N.M. Yasin

Profile of Drug Related Problems Based on Classification of Pharmaceutical Care Network in Europe on the Prescription of Five Chain Pharmacies
Lucia Hendriati, Angelica Kresnamurti, Teguh Widodo, Abdul Rahem

The Implementation of Comprehensive Primary Health Care Strategies (CPHC) Towards Increasing Mothers' Education of Giving Right Medications to Tackle Infant Mortality In West Nusa Tenggara Province: A Narrative Review
Sri Sunaringsih, Ika Wardojo

Spinal Cord Histology after Ginger Oil Administration in Mice with Complete Freund's Adjuvant Induced Inflammatory Pain
Fifteen Aprila F, Alifia Rahardhini N.L, Liliana I.K

The Difference of Extraction Method Jackfruit Leaf (Artocarpus heterophyllus Lamk.) to Bioactive Substance Activities of T47D Cell
Fahrauk Faramayuda, Melly Kusumardini, Clara Sunardi

Antioxidant Activity Test Extract and Fraction Glacilaria Salicornia (C. Agardh Dawson) Using Linoleic Acid
Fahrauk Faramayuda, Julia Ratnawati, Jhoni Afrianto

The Effect of Mobile Phase Polarity and Pressure Variations Towards the Percentage Distribution of (+)-Catechin from Gambier Using Vacuum Liquid Chromatography (VLC)
H. Meriyanl, N.K. Warditiani, N.P.E. Leliqia

Pre-Clinical Study of Treatment Peptic Ulcers with Water Extract of Leunca (Solanumnigrum L.) Fruit on Male Wistar Rats
F. Hermanto, A.A. Soemardji, Puji Hastuti

Antimicrobial Potentials of Anacardium occidentale L. Agains Staphylococcus aureus and Staphylococcus epidermidis
Ririn Puspadewi, Putranti Adirestuti, Desi Nursholihah
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study of Clopidogrel Bisulfate Raw Material Properties of the Thermic Treatment</td>
<td>137</td>
</tr>
<tr>
<td>Tita Hartyana Sutarna, Fikri Alatas, Hestriy Ratih, Novi Mega L</td>
<td></td>
</tr>
<tr>
<td>Uric Acid Inhibition Activity of Pluchea indica L Leaf Extracted Ethanol in Hyperuricemia induced Mice</td>
<td>140</td>
</tr>
<tr>
<td>Usawatun Chasanah, Myrna Dian Rahmawati</td>
<td></td>
</tr>
<tr>
<td>The Use Of Furosemide In Patients With Chronic Kidney Disease</td>
<td>144</td>
</tr>
<tr>
<td>Nailis Syifa', Didik Hasmono, Fitri Surya Kartika Dewi</td>
<td></td>
</tr>
<tr>
<td>Analysis Of Fatty Acid Levels and Microbial Contamination for Development of Virgin Coconut Oil Syrup in Tengkudak Village, Tabanan, Bali</td>
<td>148</td>
</tr>
<tr>
<td>Made Ary Sarasmita, I Wayan Karta</td>
<td></td>
</tr>
<tr>
<td>Optimization of Derivative Reaction Atenolol with 1-Fluoro-2,4-Dinitrobenzene (FDNB) for Quantitative Determination Atenolol by HPLC-UV</td>
<td>152</td>
</tr>
<tr>
<td>L.P.M.K. Dewi, S. Martono, L. Hakim</td>
<td></td>
</tr>
<tr>
<td>Isolation and Identification Lactic Acid Bacteria from the Goat Milk and this Antimicrobial Test to Escherichia coli and Shigella dysenteriae</td>
<td>159</td>
</tr>
<tr>
<td>Mira Andam Dewi, Ririn Puspadewi, Agnes Dwi Aryani</td>
<td></td>
</tr>
<tr>
<td>Impact Of Insurance Status On Appropriate Utilization Antihypertensive Medications Based On Jnc-7 And Clinical Outcomes Inpatients Of "X" Hospital Bantul</td>
<td>163</td>
</tr>
<tr>
<td>F. Rahmawati, Akrom, W. Supadmi</td>
<td></td>
</tr>
<tr>
<td>Validation Of High Performance Liquid Chromatography Method For Determination Of Sulfamethoxazole And Trimethoprim In Pharmaceutical Dosage Form</td>
<td>171</td>
</tr>
<tr>
<td>Engrid Juni Astuti, Dian Ermawati, Harjana, Achmad Inoni</td>
<td></td>
</tr>
<tr>
<td>The Influence Of High Fructose With Low Magnesium Diet On The Liver And Renal Tubular Cells Histopathology Of Male Wistar Rats</td>
<td>177</td>
</tr>
<tr>
<td>Wahyu Dewi Tamayanti, Ervianti Dela Rosa, Regina Carlosono, Ratna Megawati Widharna, Bernadette Dian Novita Krisdianto</td>
<td></td>
</tr>
</tbody>
</table>
THE INFLUENCE OF HIGH FRUCTOSE WITH LOW MAGNESIUM DIET ON THE LIVER AND RENAL TUBULAR CELLS HISTOPATHOLOGY OF MALE WISTAR RATS

Wahyu Dewi Tamayanti 1, Ervianti Dela Rosa 1, Regina Carlosono 1, Ratna Megawati Widhana 1, Bernadette Dian Novita Krisdianto 2

1 Department of Clinical and Community Pharmacy, Faculty of Pharmacy, Widya Mandala Chatolic University Surabaya, Indonesia.
2 Medical Faculty, Department of Pharmacology, Widya Mandala Chatolic University Surabaya, Indonesia.

Correspondence:
dewffua@gmail.com

ABSTRACT

Background: Diet containing high fructose with low magnesium may induce hyperglycemia which is one of the metabolic syndrome disorder related to chronic kidney disease. Additionally, high fructose diet induces the novo lipogenesis to form triglycerides and VLDL that may lead to the increased of fat storage and thus triggering insulin resistance.

Objective: This study was aimed to evaluate renal and liver histopathology by measuring the number of cells underwent necrosis and apoptosis as well as the expression of p53 gene after high fructose and low magnesium treatment.

Methods: As many as thirty two male Wistar rats were divided into 4 groups: control group (C); P1 group (high fructose diet); P2 group (low magnesium diet); and P3 group (high fructose with low magnesium diet). All groups were treated by their respective diet for 2 months. Observation was conducted on the renal tubular and liver cells in the organs that were paraffin blocked, HE stained, and bounded by p53 antibody through IHC.

Outcome measured: The percentage of necrotic, apoptotic, and p53 expression in liver and renal tubular cells of male Wistar rats after high fructose and low magnesium diet.

Results: The results that were analyzed by Oneway Anova and Duncan test showed necrosis in renal tubular cells and hepatocytes in all treatment groups. The necrosis percentages of renal tubular cells were 18.80±3.31%, 43.19%, 34.50%, and 50.44% respective for C, P1, P2, and P3. Whereas, the necrosis percentages in the liver cells were 12.77±4.54%, 27.36%, 13.73%, and 37.48% respective for C, P1, P2, and P3. However, no apoptotic and p53 gene expression both in renal tubular and liver cells was observed.
Conclusion: This study revealed that continuous high fructose with low magnesium diet may induce severe insulin resistance, which was seen through P3 group that showed the highest necrosis percentage both in liver and renal tubular cells.

Keywords: high fructose and low magnesium diet, liver and renal tubular cells, necrosis, apoptosis, p53

INTRODUCTION

Fructose is a simple sugar that has been widely used as artificial sweetener. It is used as a component of food and beverages in the form of high fructose corn syrup (HFCS). The high consumption of HFCS of 1970 to 1999 was significantly related to the increased incidence of obesity and diabetes mellitus, as had been observed by US Food and Drug Administration (Prahastuti, 2011; Bantle, 2009; US DAERS, 2007). Fructose is efficiently induced de novo lipogenesis (DNL) by serving carbon atom to form triglyceride and very low density lipoprotein (VLDL), thus improving fat storage in the liver that eventually stimulating insulin resistance which may lead to liver disorder (Prahastuti, 2011). Fructose is involved in the glycolysis process of the body. During the process, fructose is absorbed and subsequently converted into glucose. It will then metabolized in the liver and use the magnesium as cofactor in taking the phosphate group of Adenosine Tri Phospat (ATP) (Sun&Empie, 2012).

Magnesium is a cofactor in ATP transfer process. It is important in facilitating phosphorylation of insulin receptor. It is somehow believed that depletion of intracellular magnesium may lead to the defective function of tyrosine kinase of the receptor. The defect will induce the release and activation of insulin, therefore promoting the insulin resistance (Takaya et al., 2004; Song et al., 2003; Wyatmoko, 2007). On the other hand, magnesium is also playing a role in trans-membrane transfer of calcium, sodium, and potassium ions in de- and repolarization phase by activating the Ca-ATPase and Na-ATPase. In that situation, intracellular low magnesium level may lead to the release of potassium out of the cell which then disrupt the conduction and metabolism of the cells. The disruption may worsen the inflammation and metabolic syndrome by stimulating the insulin resistance. The insulin resistance is believed to be the cause of increased lipid oxidation in the liver which may promote liver dysfunction, such as necrosis and apoptosis (Rayssiguier et al., 2006; Hastuti, 2006; Wyatmoko, 2007; Macfarlane et al., 2000). Furthermore, the poorer metabolic syndrome due to insulin resistance will also contribute to the increased disruption of renal cells which subsequently promoting the chronic kidney disease (CKD) (Chen et al., 2004).

In necrosis, a group of hepatic and renal tubular cells is inflamed and/ or lethal, which can be observed by the asymmetric forming of the cells and the missing of the cells nuclear part (Kasno, 2005; Macfarlane et al., 2000; Nugraha et al., 2008). The apoptosis is a programmed cell death which may be occurred either as a physiologic or pathologic condition (Macfarlane et al., 2000). When a cell is lethal, the DNA damage is occurred, which will subsequently induce the phosphorylation of p53 by activating ATM/ATR kinase and stimulating Chk2/Chk1 kinase (Amudson et al., 1998; Syafudin, 2007; Sukamdi et al., 2010; Bartek and Lukas, 2001). The p53 gene is one of tumor suppressor genes which will be accumulated during the DNA damage. It is regulated the apoptotic process by inhibiting the cell replication to stop at the G1 phase (Lumongga, 2008). The insight regarding the fructose, magnesium, and their influenced in the alteration of renal tubular and liver cells have supported this study to be conducted.
METHODS
Animal Handling

This experimental study was conducted in Animal Laboratorium, Clinical Chemistry Laboratorium of Faculty of Pharmacy - Widya Mandala Catholic University Surabaya, and Anatomy Pathology Department of Dr. Soetomo Hospital, Surabaya, Indonesia. As many as 32 male Wistar rats (Rattus norvegicus) of 150-200 g body weight and 2-3 months of age, were used. The Wistar rats were obtained from the Biochemistry Animal Laboratorium of Medical Faculty, Airlangga University, Surabaya. Prior to the study, the rats were adapted to new environment for two weeks. The rats were cage in the room with 12 hours of light and 12 hours of dark, under good air circulation of 30°C temperature. The food and water was given twice a day. The rats was divided into 4 groups of 5, namely: control group (C) which fed normal food and 3.3% premix contained magnesium of 60 ml/day; high fructose diet group (P1) which fed normal food that added 60% fructose solution of 2 ml/day; low magnesium diet group (P2) which fed only normal food; and high fructose and low magnesium diet group (P3) which fed normal food added 60% fructose solution of 2 ml/day and 3.3% premix contained magnesium of 60ml/day. The treatment was given for 2 months.

Materials

Materials used were: dissection equipments, weight balance (Sartorium, Germany), microtome (Leica RM 2245), light microscope (Olympus CX521), fructose (Merck KGaA, Germany), buffer formaline, hematoxilin eosin dye, antibody p53 (Biocare, USA).

Research methods

The 4 groups of rats were treated with their respective diet for 2 months. Afterwards, the rats were sacrificed in order to obtain the liver and the kidney. Both of the organs were immersed in buffer formaline before blocked with paraffin. After blocking, the organs were sliced and stained by Hematoxilin-Eosin dye. The stained organs were then be used to analyze the necrotic and apoptotic condition. The paraffin blocked organs were also sliced and then subjected to the immunohistochemistry (IHC) process, in which the p53 antibody was conjugated into the prepared sliced organs. By using this IHC slide, the p53 expression level was counted under light microscope of 400 times magnification. The obtained data were analyzed by Kolmogorov-Smirnov and confirmed by Homogeneity of Variances Test in order to examine their normal distribution. Since the data were normally distributed, the One Way Anova was performed, and followed by Duncan test to attain the significant different between group.

RESULTS AND DISCUSSION

The research showed that high fructose and low magnesium diet was able to increase the body weight of the rats compared to other groups (Fig. 1). This phenomenon occurred due to the ability of fructose to
Figure 1. Increased Rats Body Weight After Treatment. A: control group B: high fructose diet group C: low magnesium diet group D: high fructose low magnesium diet group

stimulate the leptin resistance which may lead to the eating addicted effect of the rats. As the leptin effect was resisted, the rats have lost the satiated feel. Thus, they always feel hungry and eat as much as they can. This, will triggered de novo lipogenesis due to the formation of triglycerides (TG) as the product of fructose metabolism in the liver. If this formation remains, the TG will be accumulated in the liver. The TG accumulation will induce the formation of fat degeneration in the cytoplasm of the hepatocyte which can be observed by the increased volume of it. If this condition occurred continuously, may induce the cell disfunction by undergoing the necrotic mechanism (Hastuti, 2006; Mayes, 2013; Prahastuti, 2011).

The necrotic inside the cells was proved by counting the number of hepatocytes and renal tubular cells that showed nuclear volume alteration (Fig. 2). The figure showed that in hepatocytes, the percentages of necrotic were 12.77±4.54%, 27.36±4.00%, 13.73±3.25%, and 37.48±4.16% respective for C, P1, P2, and P3 groups (Table 1).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Hepatocytes (%)</th>
<th>Renal tubular cells (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (C)</td>
<td>12.77±4.54</td>
<td>18.80 ± 3.31</td>
</tr>
<tr>
<td>High fructose diet (P1)</td>
<td>27.36±4.00</td>
<td>43.19 ± 9.03</td>
</tr>
<tr>
<td>Low magnesium diet (P2)</td>
<td>13.73±3.25</td>
<td>34.50 ± 6.98</td>
</tr>
<tr>
<td>High fructose low magnesium diet (P3)</td>
<td>37.48±4.16</td>
<td>50.44 ± 6.67</td>
</tr>
</tbody>
</table>
The highest necrotic percentage showed by P3 might be due to the severe condition of insulin resistance. The deficiency of magnesium may thus induce phosphorilation of insulin receptor, therefore induced a defective function of tyrosine kinase and decrease the ability of insulin to transport glucose into the cells. This situation is tightly related to the occurrence of metabolic syndrome (Takaya et al., 2004, Yenny dan Suastika, 2011). The decreased glucose intake into the cells may cause advanced glycation end products (AGEs) formation. The higher number of AGEs may then inhibit activity of nitric oxide (NO), thus trigger the formation of reactive oxygen species (ROS). ROS may lead to the occurrence of oxidative stress, inflammation, and endothel disfuction, which thus disrupt the hepatocytes (Sanchez et al., 2007, Uribarri et al., 2010, Goldin et al., 2006).

On the other hand, magnesium deficiency may decrease the potassium and increase natrium concentration inside hepatocytes, thus influence the osmotic balance and may facilitate the flow of extracellular fluid into the hepatocytes. When continuously accured, this condition may cause the swallowing of the hepatocytes vacuola. This condition known as the hidropic degeneration (HD) (Fig. 3). Long term HD may trigger the energy release of hepatocytes activity, thus will eventually induce necrosis of hepatocytes (Wiyatmoko, 2007, Hastuti, 2006).
It was shown in Fig 3. that high fructose and low magnesium diet induced the alteration of hepatocytes, such as fat degeneration, hidrophic degeneration, and turbid cells. The turbid cells were swollen due to the input of extracellular water. Moreover, cytoplasm of the turbid cells contained granules and observed as heterogenous cells in terms of shape and form. As the continuous damage occurs, the hepatocyte underwent vacuolization, in which the cytoplasm was observed to be clearer due to the flow of fluid into hepatocytes inside the vacuoles. Further, the hepatocytes underwent fat degeneration which may be a trigger of necrotic (Hastuti, 2006). In necrotic, the hepatocyte membrane was lysed thus the border between hepatocytes was not clearly observed (Hastuti, 2006, Saleh, 1979, Susilowati, 2009).

In the renal tubular cells, the necrotic percentages were 18.80±3.31%; 43.19±9.03; 34.50±6.98%; and 50.45±6.67 respective for C, P1, P2, and P3. Figure 2 shown that the necrotic of renal tubular cells in P1 was trice higher, P2 was twice higher, and P3 was 4 times higher than the C (Table 1). Necrotic cells of the renal tubular cells, that were HE-stained, underwent an alteration on their shapes and form. The necrotic cells observed as bigger or smaller in size with oval shapes compared to the normal cells (Fig. 4). Moreover, the necrotic cells shown as pale color compared to the normal cells, which color were purple-blue.

![Figure 4. Renal Tubular cells HE-Stained (400x magnification) C. control group P1. high fructose diet group P2. low magnesium diet group P3. high fructose low magnesium diet group → Necrotic cells](image)

The results indicate that low magnesium diet that occur continuously will stimulate the kidney stone formation which eventually triggering necrotic of the cells. Formation of kidney stone occurred may be due to the inhibition of cAMP activation that modified paratiroid hormone synthesis ada secretion (Shills, 1999). The modified function of paratiroid hormone will effect the hydroxylation of calciotrol and calcidiol (Fetteli et al., 1991) which control the calcium amount. When the condition occurred, the calcium level will not be controlled, thus calcium will bind to citrate and oxalate in the renal tubular cells. This may decrease the excretion of citrate. The fructose diet is believed to undergo necrosis through the resistance of insulin. The combination of magnesium with fructose will worsen the condition since magnesium is the cofactor of ATP transfer reaction. Therefore, magnesium will cause defect in insulin receptor by inhibiting phosphorylation of tyrosine kinase in
the receptor. This condition will eventually lead to the diabetes mellitus which chronically may cause renal dysfunction (Takaya et al., 2004).

Figure 5. Hepatocytes Immunohistochemistry – p53 antibody (400x magnification) 1. Normal hepatocytes 2. Fat degeneration C. control group P1. high fructose diet group P2. low magnesium diet group P3. high fructose low magnesium diet group

The p53 wild type antibody was coupled to the hepatocytes. The necrotic hepatocytes which expressed p53 shown brown nucleus color compared to the normal cells. The results showed no p53 expression in the hepatocytes (Fig. 5). It might be caused by no mutagenic effect stimulated by the treatments. Therefore, no p53 expression was observed. The p53 gene is involved in the cells regulation by governing the cells to undergo apoptosis (Kodama et al., 2011, Sukamdi et al., 2010). It is one of pro-apoptotic gene that expressed when there DNA damage is occurred. It works by inhibiting cell replication and stopping the G1 phase of cell cycle in order to trigger the DNA repair (Amudson et al., 1998, Bartek and Lukas, 2001, Syaifudin, 2007).

Figure 6. Renal tubular cells Immunohistochemistry – p53 antibody (400x magnification) 1. Normal hepatocytes 2. Fat degeneration C. control group P1. high fructose diet group P2. low magnesium diet group P3. high fructose low magnesium diet group → cells with no expression of p53
In the renal tubular cells, no p53 expression was observed as well. As seen in Fig. 6 which there is no cells whose nucleus shown brown color. Therefore we can see that high fructose and low magnesium diet was not induce DNA damage thus no p53 expression was observed.

CONCLUSION
The high fructose and low magnesium diet may cause hepatic and renal tubular cells necrotic. However, no apoptotic and p53 expression was observed in both hepatocytes and renal tubular cells.

ACKNOWLEDGEMENT
We would like to express our sincere gratitude to Dr. Iwan Sahrial Hamid, drh., M.Si. for his sharing though in this study.

REFERENCES