LAMPIRAN I

PERHITUNGAN HARGA LC₅₀ DARI MASING-MASING EKSTRAK DENGAN FINNEY COMPUTER PROGRAM

A. Ulangan I

1. Ekstrak etanol Solanum nigrum

FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA CALCULATES ED₅₀, LD₅₀, ETC.

DATA REQUIRED FOR EACH DOSE:

N - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
P - THE NUMBER OF SHRIMP KILLED
D - THE ARITHMETIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30</td>
<td>>4</td>
<td>>200.8</td>
</tr>
<tr>
<td>>30</td>
<td>>9</td>
<td>>301.2</td>
</tr>
<tr>
<td>>30</td>
<td>>17</td>
<td>>401.6</td>
</tr>
<tr>
<td>>30</td>
<td>>28</td>
<td>>502</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>602.4</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)? Y

EXPECTED PROBITS

3.458
4.604
5.418
6.049
6.564

CALCULATED PROBITS:

3.526
4.681
5.500
6.135
6.654

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 6.6058

ED₅₀ = 336.9363

G = 0.0708

UPPER CONFIDENCE LIMIT = 367.3177
LOWER CONFIDENCE LIMIT = 304.2753

DO YOU WANT TO ENTER A NEW DATA SET (Y/N)? N
2. Ekstrak etanol Solanum torvum

FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA CALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

N - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
P - THE NUMBER OF SHRIMP KILLED
D - THE ARITHMETRIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA
N P D
>30 >1 >1004
>30 >6 >1506
>30 >16 >2008
>30 >25 >2510
>30 >30 >3012

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)?

EXPECTED PROBITS
2.710
4.150
5.125
5.964
6.612

CALCULATED PROBITS:
2.786
4.213
5.012
6.012
6.654

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 2.4730

ED50 = 1882.9490
G = 0.0747

UPPER CONFIDENCE LIMIT = 2027.9660
LOWER CONFIDENCE LIMIT = 1729.9850

DO YOU WANT TO ENTER A NEW DATA SET (Y/N)?
3. Ekstrak etanol Solanum indicum

FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA
CALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

- N - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
- P - THE NUMBER OF SHRIMP KILLED
- D - THE ARITHMETIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA

<table>
<thead>
<tr>
<th>D</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30</td>
<td>>3</td>
<td>>100.2</td>
</tr>
<tr>
<td>>30</td>
<td>>8</td>
<td>>200.4</td>
</tr>
<tr>
<td>>30</td>
<td>>21</td>
<td>>300.6</td>
</tr>
<tr>
<td>>30</td>
<td>>50</td>
<td>>400.8</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>501</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)?

EXPECTED PROBITS CALCULATED PROBITS:
3.158 3.235
4.700 4.774
5.602 5.673
6.242 6.312
6.738 6.807

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 8.2360

ED50 = 221.9297
G = 0.0728

UPPER CONFIDENCE LIMIT = 249.8109
LOWER CONFIDENCE LIMIT = 191.6440

DO YOU WANT TO ENTER A NEW DATA SET (Y/N)?
FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA
CALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

N - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
P - THE NUMBER OF SHRIMP KILLED
D - THE ARITHMETIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30</td>
<td>>1</td>
<td>>100.6</td>
</tr>
<tr>
<td>>30</td>
<td>>5</td>
<td>>201.2</td>
</tr>
<tr>
<td>>30</td>
<td>>16</td>
<td>>301.8</td>
</tr>
<tr>
<td>>30</td>
<td>>25</td>
<td>>402.4</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>503</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)? Y

EXPECTED PROBITS

| 2.423 |
| 4.158 |
| 5.174 |
| 5.894 |
| 6.452 |

CALCULATED PROBITS:

| 2.461 |
| 4.215 |
| 5.244 |
| 5.969 |
| 6.533 |

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 6.7914

ED50 = 274.3891
G = 0.0820

UPPER CONFIDENCE LIMIT = 303.9004
LOWER CONFIDENCE LIMIT = 242.7283
DO YOU WANT TO ENTER A NEW DATA SET (Y/N)? N
5. Ekstrak etanol *Solanum verbascifolium*

FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATACALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

N - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
P - THE NUMBER OF SHRIMP KILLED
D - THE ARITHMETRIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>>30</td>
<td>>1</td>
<td>>301.8</td>
</tr>
<tr>
<td>>30</td>
<td>>7</td>
<td>>402.4</td>
</tr>
<tr>
<td>>30</td>
<td>>16</td>
<td>>503</td>
</tr>
<tr>
<td>>30</td>
<td>>26</td>
<td>>603.6</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>704.2</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)? ❌

EXPECTED PROBITS

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.852</td>
</tr>
<tr>
<td>4.189</td>
</tr>
<tr>
<td>5.227</td>
</tr>
<tr>
<td>6.074</td>
</tr>
<tr>
<td>6.794</td>
</tr>
</tbody>
</table>

CALCULATED PROBITS:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.939</td>
</tr>
<tr>
<td>4.249</td>
</tr>
<tr>
<td>5.265</td>
</tr>
<tr>
<td>6.095</td>
</tr>
<tr>
<td>G '78</td>
</tr>
</tbody>
</table>

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 1.6017

ED50 = 474.5751
G = 0.0724

UPPER CONFIDENCE LIMIT = 503.0995
LOWER CONFIDENCE LIMIT = 444.6182

DO YOU WANT TO ENTER A NEW DATA SET (Y/N)? ❌
B. ULANGAN II

1. Ekstrak etanol Solanum nigrum

FINNEY’S PROBIT ANALYSIS FOR QUANTAL DATA
CALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

N - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
P - THE NUMBER OF SHRIMP KILLED
D - THE ARITHMETIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30</td>
<td>>3</td>
<td>>201.2</td>
</tr>
<tr>
<td>>30</td>
<td>>10</td>
<td>>301.8</td>
</tr>
<tr>
<td>>30</td>
<td>>16</td>
<td>>402.4</td>
</tr>
<tr>
<td>>30</td>
<td>>25</td>
<td>>503</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>603.6</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)?

EXPECTED PROBITS

3.334 4.541 5.397 6.062 6.604

CALCULATED PROBITS:

3.425 4.627 5.479 6.141 6.681

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 5.9335

ED50 = 342.3017
G = 0.0712

UPPER CONFIDENCE LIMIT = 372.3513
LOWER CONFIDENCE LIMIT = 309.9833
DO YOU WANT TO ENTER A NEW DATA SET (Y/N)?
2. Ekstrak etanol Solanum torvum

FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA CALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

N - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
P - THE NUMBER OF SHRIMP KILLED
D - THE ARITHMETIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30</td>
<td>>2</td>
<td>>1012</td>
</tr>
<tr>
<td>>30</td>
<td>>7</td>
<td>>1518</td>
</tr>
<tr>
<td>>30</td>
<td>>17</td>
<td>>2024</td>
</tr>
<tr>
<td>>30</td>
<td>>25</td>
<td>>2530</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>3036</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)?

EXPECTED PROBITS CALCULATED PROBITS:
3.002 3.052
4.378 4.439
5.355 5.423
6.113 6.187
6.732 6.810

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 5.0690

ED50 = 1788.4910

G = 0.0692

UPPER CONFIDENCE LIMIT = 1929.8490
LOWER CONFIDENCE LIMIT = 1637.5790

DO YOU WANT TO ENTER A NEW DATA SET (Y/N)?
3. Ekstrak etanol Solanum indicum

FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA CALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

N - THE NUMBER OF SHRIMP
P - THE NUMBER OF SHRIMP KILLED
D - THE ARITHMETRIC DOSE

ENTER NUMBER OF DOSE LEVELS USED? 5

ENTER DATA

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>30</td>
<td>>3</td>
<td>>100.6</td>
</tr>
<tr>
<td>30</td>
<td>>7</td>
<td>>201.2</td>
</tr>
<tr>
<td>30</td>
<td>>19</td>
<td>>301.8</td>
</tr>
<tr>
<td>30</td>
<td>>28</td>
<td>>402.4</td>
</tr>
<tr>
<td>30</td>
<td>>30</td>
<td>>503</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)? Y

EXPECTED PROBITS

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.121</td>
</tr>
<tr>
<td>4.603</td>
</tr>
<tr>
<td>5.470</td>
</tr>
<tr>
<td>6.086</td>
</tr>
<tr>
<td>6.563</td>
</tr>
</tbody>
</table>

CALCULATED PROBITS:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.195</td>
</tr>
<tr>
<td>4.674</td>
</tr>
<tr>
<td>5.539</td>
</tr>
<tr>
<td>6.153</td>
</tr>
<tr>
<td>6.630</td>
</tr>
</tbody>
</table>

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 9.3259

ED50 = 234.4048

G = 0.0749

UPPER CONFIDENCE LIMIT = 264.0435
LOWER CONFIDENCE LIMIT = 202.5689
DO YOU WANT TO ENTER A NEW DATA SET (Y/N)?
FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA CALCULATES ED₅₀, LD₅₀, ETC.

DATA REQUIRED FOR EACH DOSE:

N - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
P - THE NUMBER OF SHRIMP KILLED
D - THE ARITHMETRIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30</td>
<td>>2</td>
<td>>100.4</td>
</tr>
<tr>
<td>>30</td>
<td>>8</td>
<td>>200.8</td>
</tr>
<tr>
<td>>30</td>
<td>>16</td>
<td>>301.2</td>
</tr>
<tr>
<td>>30</td>
<td>>23</td>
<td>>401.6</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>502</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)?

EXPECTED PROBITS

<table>
<thead>
<tr>
<th></th>
<th>CALCULATED PROBITS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.046</td>
<td>3.138</td>
</tr>
<tr>
<td>4.398</td>
<td>4.493</td>
</tr>
<tr>
<td>5.189</td>
<td>5.285</td>
</tr>
<tr>
<td>5.750</td>
<td>5.848</td>
</tr>
<tr>
<td>6.186</td>
<td>6.284</td>
</tr>
</tbody>
</table>

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 5.0407

ED₅₀ = 260.2713
G = 0.0833

UPPER CONFIDENCE LIMIT = 294.3085
LOWER CONFIDENCE LIMIT = 224.8967

DO YOU WANT TO ENTER A NEW DATA SET (Y/N)?
5. Ekstrak etanol Solanum verbascifolium

FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA CALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

N - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
P - THE NUMBER OF SHRIMP KILLED
D - THE ARITHMETRIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30</td>
<td>>4</td>
<td>>300.6</td>
</tr>
<tr>
<td>>30</td>
<td>>8</td>
<td>>400.8</td>
</tr>
<tr>
<td>>30</td>
<td>>18</td>
<td>>501</td>
</tr>
<tr>
<td>>30</td>
<td>>24</td>
<td>>601.2</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>701.4</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)? [Y]

EXPECTED PROBITS CALCULATED PROBITS:
3.558 3.600
4.530 4.580
5.284 5.340
5.901 5.961
6.422 6.486

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 3.6619

ED50 = 453.4341
G = 0.0738

UPPER CONFIDENCE LIMIT = 486.2876
LOWER CONFIDENCE LIMIT = 418.8730
DO YOU WANT TO ENTER A NEW DATA SET (Y/N)? [N]
C. ULANGAN III

1. Ekstrak etanol *Solanum nigrum*

FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA CALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

N - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL,
P - THE NUMBER OF SHRIMP KILLED
D - THE ARITHMETIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30</td>
<td>>2</td>
<td>>200.8</td>
</tr>
<tr>
<td>>30</td>
<td>>7</td>
<td>>301.2</td>
</tr>
<tr>
<td>>30</td>
<td>>16</td>
<td>>401.6</td>
</tr>
<tr>
<td>>30</td>
<td>>27</td>
<td>>502</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>602.4</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)? □

EXPECTED PROBITS

<table>
<thead>
<tr>
<th></th>
<th>CALCULATED PROBITS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.031</td>
<td>3.071</td>
</tr>
<tr>
<td>4.349</td>
<td>4.405</td>
</tr>
<tr>
<td>5.284</td>
<td>5.352</td>
</tr>
<tr>
<td>6.010</td>
<td>6.087</td>
</tr>
<tr>
<td>6.603</td>
<td>6.717</td>
</tr>
</tbody>
</table>

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 4.7169

ED50 = 360.8441

G = 0.0695

UPPER CONFIDENCE LIMIT = 389.8835
LOWER CONFIDENCE LIMIT = 330.1533

DO YOU WANT TO ENTER A NEW DATA SET (Y/N)? □
2. Ekstrak etanol *Solanum torvum*

FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA
CALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

N - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
P - THE NUMBER OF SHRIMP KILLED
D - THE ARITHMETRIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30</td>
<td>>2</td>
<td>>1012</td>
</tr>
<tr>
<td>>30</td>
<td>>7</td>
<td>>1518</td>
</tr>
<tr>
<td>>30</td>
<td>>16</td>
<td>>2024</td>
</tr>
<tr>
<td>>30</td>
<td>>27</td>
<td>>2530</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>3036</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)? [Y]

EXPECTED PROBITS | CALCULATED PROBITS:
- 3.031 | 3.071
- 4.349 | 4.405
- 5.284 | 5.303
- 6.010 | 6.087
- 6.603 | 6.687

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 4.7183

ED50 = 1818.5910

G = 0.0695

UPPER CONFIDENCE LIMIT = 1964.9500
LOWER CONFIDENCE LIMIT = 1663.9110

DO YOU WANT TO ENTER A NEW DATA SET (Y/N)? [Y]
3. Ekstrak etanol *Solanum indicum*

FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA CALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

- **N** - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
- **P** - THE NUMBER OF SHRIMP KILLED
- **D** - THE ARITHMETIC DOSE

ENTER NUMBER OF DOSE LEVELS USED? 5

ENTER DATA

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30</td>
<td>>2</td>
<td>>100.4</td>
</tr>
<tr>
<td>>30</td>
<td>>6</td>
<td>>200.8</td>
</tr>
<tr>
<td>>30</td>
<td>>16</td>
<td>>301.2</td>
</tr>
<tr>
<td>>30</td>
<td>>25</td>
<td>>401.6</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>502</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)?

EXPECTED PROBITS: 2.875 4.353 5.218 5.831 6.307
CALCULATED PROBITS: 2.932 4.426 5.300 5.920 6.401

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 7.7597

ED50 = 262.0188

G = 0.0800

UPPER CONFIDENCE LIMIT = 293.8109
LOWER CONFIDENCE LIMIT = 228.5428
DO YOU WANT TO ENTER A NEW RUN: GET (Y/N)?
4. Ekstrak etanol *Solanum chasianum*

FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA CALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

N – THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
P – THE NUMBER OF SHRIMP KILLED
D – THE ARITHMETIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30</td>
<td>>3</td>
<td>>100.2</td>
</tr>
<tr>
<td>>30</td>
<td>>7</td>
<td>>200.4</td>
</tr>
<tr>
<td>>30</td>
<td>>18</td>
<td>>300.6</td>
</tr>
<tr>
<td>>30</td>
<td>>24</td>
<td>>400.8</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>501</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)? [X]

EXPECTED PROBITS

| 3.199 | 4.520 | 5.293 | 5.842 | 6.267 |

CALCULATED PROBITS:

| 3.286 | 4.599 | 5.367 | 5.912 | 6.335 |

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 6.9692

ED50 = 247.6183

G = 0.0815

UPPER CONFIDENCE LIMIT = 281.1176
LOWER CONFIDENCE LIMIT = 212.7054

DO YOU WANT TO ENTER A NEW DATA SET (Y/N)? [X]
5. Ekstrak etanol *Solanum verbascifolium*

FINNEY'S PROBIT ANALYSIS FOR QUANTAL DATA CALCULATES ED50, LD50, ETC.

DATA REQUIRED FOR EACH DOSE:

N - THE NUMBER OF SHRIMP AT THAT DOSE LEVEL
P - THE NUMBER OF SHRIMP KILLED
D - THE ARITHMETRIC DOSE

ENTER NUMBER OF DOSE LEVELS USED ? 5

ENTER DATA

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30</td>
<td>>3</td>
<td>>301.8</td>
</tr>
<tr>
<td>>30</td>
<td>>7</td>
<td>>402.4</td>
</tr>
<tr>
<td>>30</td>
<td>>16</td>
<td>>503</td>
</tr>
<tr>
<td>>30</td>
<td>>25</td>
<td>>603.6</td>
</tr>
<tr>
<td>>30</td>
<td>>30</td>
<td>>704.2</td>
</tr>
</tbody>
</table>

DO YOU WANT TO PRINT THE CALCULATED VALUES (Y/N)?

EXPECTED PROBITS CALCULATED PROBITS
3.305 3.361
4.383 4.442
5.218 5.280
5.901 5.964
6.478 6.543

CHI SQUARED FOR 3 DEGREE(S) OF FREEDOM = 4.1129

ED50 = 466.9159

G = 0.0710

UPPER CONFIDENCE LIMIT = 498.4341
LOWER CONFIDENCE LIMIT = 434.0395
DO YOU WANT TO ENTER A NEW DATA SET (Y/N)?
A. Ulangan 1
1. Ekstrak etanol Solanum nigrum

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,8</td>
<td>13,33</td>
</tr>
<tr>
<td>301,2</td>
<td>30</td>
</tr>
<tr>
<td>401,6</td>
<td>56,67</td>
</tr>
<tr>
<td>502</td>
<td>93,33</td>
</tr>
<tr>
<td>602,4</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol Solanum nigron pada ulangan I.

Persamaan garis regresi $y = 196,3163 \times - 446,4953$
Untuk $y=50$, maka $x=2,5291$
$x = \log_{10}$ konsentrasi ekstrak $=2,5291$
jadi konsentrasi LC$_{50}$ ekstrak= 338,1093 ppm
2. Ekstrak etanol *Solanum torvum*

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1004</td>
<td>3,33</td>
</tr>
<tr>
<td>1506</td>
<td>20</td>
</tr>
<tr>
<td>2008</td>
<td>53,33</td>
</tr>
<tr>
<td>2510</td>
<td>83,33</td>
</tr>
<tr>
<td>3012</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol *Solanum torvum* pada ulangan I.

Persamaan garis regresi $y = 212,3123 \times - 642,7239$
Untuk $y=50$, maka $x=3,2628$
$x= \log_\text{aritma konsentrasi ekstrak}=3,2628$
jadi konsentrasi LC_{50} ekstrak $= 1831,3002$
3. Ekstrak etanol *Solanum indicum*

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,2</td>
<td>10</td>
</tr>
<tr>
<td>200,4</td>
<td>26,67</td>
</tr>
<tr>
<td>300,6</td>
<td>70</td>
</tr>
<tr>
<td>400,8</td>
<td>96,67</td>
</tr>
<tr>
<td>501</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol *Solanum indicum* pada ulangan I.

Persamaan garis regresi \(y = 142,3870 \times - 283,4392 \)

Untuk \(y=50 \), maka \(x=2,3418 \)

\(x = \) logaritma konsentrasi ekstrak=2,3418

jadi konsentrasi \(LC_{50} \) ekstrak= 219,6754 ppm
4. Ekstrak etanol Solanum chasianum

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,6</td>
<td>3,33</td>
</tr>
<tr>
<td>201,2</td>
<td>16,67</td>
</tr>
<tr>
<td>301,8</td>
<td>53,33</td>
</tr>
<tr>
<td>402,4</td>
<td>83,33</td>
</tr>
<tr>
<td>503</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol Solanum chasianum pada ulangan I.

Persamaan garis regresi $y = 143,7517 \times - 296,3221$
Untuk $y=50$, maka $x=2,4092$
$x= \log$aritma konsentrasi ekstrak=2,4092
jadi konsentrasi LC_{50} ekstrak= 256,54 ppm
5. Ekstrak etanol *Solanum verbascifolium*

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>301,8</td>
<td>3,33</td>
</tr>
<tr>
<td>402,4</td>
<td>23,33</td>
</tr>
<tr>
<td>503</td>
<td>53,33</td>
</tr>
<tr>
<td>603,6</td>
<td>86,67</td>
</tr>
<tr>
<td>704,2</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol *Solanum verbascifolium* pada ulangan I.

Persamaan garis regresi \(y = 277,6782 \times - 691,6448 \)

Untuk \(y = 50 \), maka \(x = 2,6788 \)

\(x = \) logaritma konsentrasi ekstrak = 2,6788

jadi konsentrasi LC\(_{50}\) ekstrak = 468,6882 ppm
B. Ulangan II

1. Ekstrak etanol Solanum nigrum

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>201,2</td>
<td>10</td>
</tr>
<tr>
<td>301,8</td>
<td>33,33</td>
</tr>
<tr>
<td>402,4</td>
<td>53,33</td>
</tr>
<tr>
<td>503</td>
<td>93,33</td>
</tr>
<tr>
<td>603,6</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol Solanum nigrum pada ulangan II.

Persamaan garis regresi $y = 199,7274 x - 456,1133$
Untuk $y=50$, maka $x=2,5340$
$x = \text{logaritma konsentrasi ekstrak}=2,5340$
jadi konsentrasi LC$_{50}$ ekstrak= 341,9951 ppm
2. **Ekstrak etanol *Solanum torvum***

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1012</td>
<td>6,67</td>
</tr>
<tr>
<td>1518</td>
<td>23,33</td>
</tr>
<tr>
<td>2024</td>
<td>56,67</td>
</tr>
<tr>
<td>2530</td>
<td>93,33</td>
</tr>
<tr>
<td>3036</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan proSENTase kematian nauplii, dalam ekstrak etanol *Solanum torvum* pada ulangan II.

Persamaan garis regresi $y = 213,4380 \times - 643,1410$
Untuk $y=50$, maka $x=3,2475$
$x= \log_{10} \text{konsentrasi ekstrak}=3,2475$
jadi konsentrasi LC_{50} ekstrak= 1768,0958 ppm
3. Ekstrak etanol *Solanum indicum*

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,6</td>
<td>10</td>
</tr>
<tr>
<td>201,2</td>
<td>23,33</td>
</tr>
<tr>
<td>301,8</td>
<td>63,33</td>
</tr>
<tr>
<td>402,4</td>
<td>93,33</td>
</tr>
<tr>
<td>503</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol *Solanum indicum* pada ulangan II.

Persamaan garis regresi $y = 140,2626x - 281,2178$
Untuk $y=50$, maka $x=2,3614$
$x= \log_{10} \text{konsentrasi ekstrak}=2,3614$
jadi konsentrasi LC$_{50}$ ekstrak $= 229,8331$ ppm
4. Ekstrak etanol Solanum chasianum

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,4</td>
<td>6,67</td>
</tr>
<tr>
<td>200,8</td>
<td>26,67</td>
</tr>
<tr>
<td>301,2</td>
<td>53,33</td>
</tr>
<tr>
<td>401,6</td>
<td>76,67</td>
</tr>
<tr>
<td>502</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol Solanum chasianum pada ulangan II.

Persamaan garis regresi y = 131,3553 x - 264,8926
Untuk y=50, maka x=2,3973
x = logaritma konsentrasi ekstrak=2,3973
jadi konsentrasi LC50 ekstrak= 249,6081 ppm
5. Ekstrak etanol *Solanum verbascifolium*

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>300,6</td>
<td>13,33</td>
</tr>
<tr>
<td>400,8</td>
<td>26,67</td>
</tr>
<tr>
<td>501</td>
<td>60</td>
</tr>
<tr>
<td>601,2</td>
<td>80</td>
</tr>
<tr>
<td>701,4</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol *Solanum verbascifolium* pada ulangan II.

Persamaan garis regresi \(y = 244,2878 \times - 598,9718 \)
Untuk \(y=50 \), maka \(x=2,6566 \)
\(x= \) logaritma konsentrasi ekstrak=2,6566
jadi konsentrasi LC\(_{50}\) ekstrak= 453,5098 ppm
C. Ulangan III

1. Ekstrak etanol *Solanum nigrum*

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,8</td>
<td>6,67</td>
</tr>
<tr>
<td>301,2</td>
<td>23,33</td>
</tr>
<tr>
<td>401,6</td>
<td>53,33</td>
</tr>
<tr>
<td>502</td>
<td>90</td>
</tr>
<tr>
<td>602,4</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol *Solanum nigrum* pada ulangan III.

Persamaan garis regresi $y = 209,7270x - 485,0035$

Untuk $y = 50$, maka $x = 2,5509$

$x = \log_{10}$ konsentrasi ekstrak $= 2,5509$

jadi konsentrasi L_{C50} ekstrak $= 355,5922$ ppm
2. Ekstrak etanol *Solanum torvum*

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1012</td>
<td>6.67</td>
</tr>
<tr>
<td>1518</td>
<td>23.33</td>
</tr>
<tr>
<td>2024</td>
<td>53.33</td>
</tr>
<tr>
<td>2530</td>
<td>90</td>
</tr>
<tr>
<td>3036</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol *Solanum torvum* pada ulangan III.

Persamaan garis regresi \(y = 209.7270 \times - 632.3192 \)
Untuk \(y=50 \), maka \(x=2.2534 \)
\(x= \) logaritma konsentrasi ekstrak=2.2534
jadi konsentrasi \(LC_{50} \) ekstrak= 1792.1281 ppm
3. Ekstrak etanol *Solanum indicum*

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,4</td>
<td>6,67</td>
</tr>
<tr>
<td>200,8</td>
<td>20</td>
</tr>
<tr>
<td>301,2</td>
<td>53,33</td>
</tr>
<tr>
<td>401,6</td>
<td>83,33</td>
</tr>
<tr>
<td>502</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol *Solanum indicum* pada ulangan III.

Persamaan garis regresi $y = 137,9682x - 280,8698$
Untuk $y=50$, maka $x=2,3982$
$x = \text{logaritma konsentrasi ekstrak} = 2,3982$
jadi konsentrasi LC$_{50}$ ekstrak = 250,1267 ppm
4. Ekstrak etanol Solanum chasianum

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,2</td>
<td>10</td>
</tr>
<tr>
<td>200,4</td>
<td>23,33</td>
</tr>
<tr>
<td>300,6</td>
<td>60</td>
</tr>
<tr>
<td>400,8</td>
<td>80</td>
</tr>
<tr>
<td>501</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol Solanum chasianum pada ulangan III.

Persamaan garis regresi $y = 131,4459x - 262,9998$
Untuk $y=50$, maka $x=2,3812$
$x=\log_{10}$ konsentrasi ekstrak=2,3812
jadi konsentrasi LC_{50} ekstrak= 240,5506 ppm
5. Ekstrak etanol *Solanum verbascifolium*

<table>
<thead>
<tr>
<th>Konsentrasi (ppm)</th>
<th>Prosentase Respon Kematian</th>
</tr>
</thead>
<tbody>
<tr>
<td>301,8</td>
<td>10</td>
</tr>
<tr>
<td>402,4</td>
<td>23,33</td>
</tr>
<tr>
<td>503</td>
<td>53,33</td>
</tr>
<tr>
<td>603,6</td>
<td>83,33</td>
</tr>
<tr>
<td>704,2</td>
<td>100</td>
</tr>
</tbody>
</table>

Grafik hubungan log konsentrasi larutan ekstrak uji dengan prosentase kematian nauplii, dalam ekstrak etanol *Solanum verbascifolium* pada ulangan III.

Persamaan garis regresi \(y = 257,7698 \times - 637,5669 \)

Untuk \(y=50 \), maka \(x=2,6673 \)

\(x \) logaritma konsentrasi ekstrak=2,6673

jadi konsentrasi LC\(_{50} \) ekstrak= 464,9091 ppm
Table II

Brine shrimp bioassay results of Ethanolic extracts of seeds of Euphorbiaceae

<table>
<thead>
<tr>
<th>Specie</th>
<th>Percent deaths at 24 hr</th>
<th>(95% confidence Interval)</th>
<th>%PS</th>
<th>LC50</th>
<th>%SKIC50</th>
<th>Reference to Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 100 1000 10000 mg/ml</td>
<td>μg/ml</td>
<td>μg/ml</td>
<td></td>
<td>μg/ml</td>
<td></td>
</tr>
<tr>
<td>1. Eremocarpus setigerus (Hooij.) Benth.</td>
<td>32 78 100 24</td>
<td>(14-37)</td>
<td>1.76x10^4</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>2. Euphorbia amygdaloides L.</td>
<td>30 80 74 30</td>
<td>(6-67)</td>
<td>6.8</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>5. Sapinum monoviviente Klotzsch</td>
<td>0 24 99 116</td>
<td>(55-219)</td>
<td>4.2</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>6. Euphorbia lagescens Sp-mode.</td>
<td>20 34 80 119</td>
<td>(55-258)</td>
<td>0.6</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>7. Euphorbia marginata Pursh.</td>
<td>0 26 100 162</td>
<td>(120-227)</td>
<td>7.7</td>
<td>60.6</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>8. Aloysias fordii Muehl.</td>
<td>0 10 100 247</td>
<td>---</td>
<td>18.3</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>10. Euphorbia lyrata L.</td>
<td>0 8 63 333</td>
<td>(238-465)</td>
<td>1.2</td>
<td>749</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>11. Bridelia retusa (L.) Spreng.</td>
<td>6 14 100 363</td>
<td>---</td>
<td>7.8</td>
<td>41.1</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>12. Euphorbia cyperioides L.</td>
<td>0 24 72 369</td>
<td>(234-584)</td>
<td>2.45x10^6</td>
<td>3.9</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>14. Euphorbia cybrensis Boss.</td>
<td>0 8 74 516</td>
<td>(303-754)</td>
<td>6.8</td>
<td>15.1</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>15. Chrozophora hirtopilifera Sp-mode.</td>
<td>0 58 641</td>
<td>(450-947)</td>
<td>85.5</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>17. Daphniphyllum himalense (Benth.) Muell.-Arg.</td>
<td>0 6 52 900</td>
<td>---</td>
<td>Inact.</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>18. Jatropha spathulata Muell.-Arg.</td>
<td>10 32 48</td>
<td>610</td>
<td>(374-753)</td>
<td>0.27</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>19. Manihot rubiiflora L.</td>
<td>0 0 38</td>
<td>>1000</td>
<td>---</td>
<td>55.8</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>20. Euphorbia paralias L.</td>
<td>0 0 46</td>
<td>>1000</td>
<td>---</td>
<td>20.2</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>21. Euphorbia elaphotrocha Boss.</td>
<td>0 4 46</td>
<td>>1000</td>
<td>---</td>
<td>30.3</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>22. Trewilia nudiflora L.</td>
<td>0 2 56</td>
<td>>1000</td>
<td>---</td>
<td>3.9x10^6</td>
<td>10^4</td>
<td>Inact.</td>
</tr>
<tr>
<td>23. Euphorbia heterophylla L.</td>
<td>10 25 42</td>
<td>>1000</td>
<td>70.1</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>26. Daphniphyllum humile Malick.</td>
<td>0 0 4</td>
<td>>1000</td>
<td>---</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>27. Mallotus philippensis (Lam.) Muell.-Arg.</td>
<td>0 0 12</td>
<td>>1000</td>
<td>---</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>28. Chrozophora tinctoria (L.) A. Juss.</td>
<td>0 0 4</td>
<td>>1000</td>
<td>---</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>29. Sapinum haematospermum Muell.-Arg.</td>
<td>0 0 10</td>
<td>>1000</td>
<td>---</td>
<td>52.4</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>30. Jatropha gossypifolia L.</td>
<td>0 0 0</td>
<td>>1000</td>
<td>---</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>31. Euphorbia falcon L.</td>
<td>0 0 6</td>
<td>>1000</td>
<td>---</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>32. Euphorbia sp. (Par. l. sp.)</td>
<td>0 0 16</td>
<td>>1000</td>
<td>---</td>
<td>12.9</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>33. Eucalyptus tereticornis Blume</td>
<td>0 0 2</td>
<td>>1000</td>
<td>---</td>
<td>38.9</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>34. Macaranga porakensis Hook.</td>
<td>0 10 10</td>
<td>>1000</td>
<td>---</td>
<td>7.8</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>35. Manihot isabola Schulte</td>
<td>0 0 6</td>
<td>>1000</td>
<td>---</td>
<td>4.0</td>
<td>3.3</td>
<td>Inact.</td>
</tr>
<tr>
<td>36. Cnidoscolus elasticus L.) Mez.</td>
<td>0 0 0</td>
<td>>1000</td>
<td>---</td>
<td>33.5</td>
<td>31.2</td>
<td>Inact.</td>
</tr>
<tr>
<td>37. Manihot hedewiana Muell.-Arg.</td>
<td>8 4 24</td>
<td>>1000</td>
<td>---</td>
<td>5.2</td>
<td>41.4</td>
<td>Inact.</td>
</tr>
<tr>
<td>38. Sapinum savannahum (L.) Poir.</td>
<td>0 14 24</td>
<td>>1000</td>
<td>---</td>
<td>0.82</td>
<td>Inact.</td>
<td></td>
</tr>
<tr>
<td>39. Acorus japonica (L.) Wall.</td>
<td>4 16 16</td>
<td>>1000</td>
<td>---</td>
<td>5.3</td>
<td>2.6</td>
<td>Inact.</td>
</tr>
<tr>
<td>40. Euphorbia medicaginina Boss.</td>
<td>0 0 0</td>
<td>>1000</td>
<td>---</td>
<td>4.0</td>
<td>59.9</td>
<td>Inact.</td>
</tr>
<tr>
<td>41. Euphorbia myrsinites L.</td>
<td>0 0 20</td>
<td>>1000</td>
<td>---</td>
<td>Inact.</td>
<td>Inact.</td>
<td></td>
</tr>
</tbody>
</table>

Where data were insufficient for probit analysis, LC50 were estimated using logit transformation (see text) which does not provide confidence intervals.
SURAT KETERANGAN IDENTIFIKASI
No.: 327/II.1.06.02/HM./1995

Kepala Cabang Balai Kebun Raya Purwodadi dengan ini menerangkan bahwa material tanaman yang dibawa oleh:

Sdr. ARIFIN SUSILO - Nrp. 244308808
Mahasiswa Fakultas Farmasi Universitas Katolik "WIDYA MAN DALI" di Surabaya ke Cabang Balai Kebun Raya Purwodadi pada tanggal 13 Maret 1995, berdasarkan buku "FLORA OF JAVA" karangan C.A. Backer jilid II (1965) halaman 470-475 nama ilmiahnya adalah:

* Marga: Solanum
* Jenis: Solanum verbascifolium Linn.

Adapun menurut buku "THE STANDARD CYCLOPEDIA OF HORTICULTURE" karangan L.H. Bailey jilid I (1953) halaman 3 klasifikasinya adalah sebagai berikut:

* Divisi: Spermatophyta
* Sub Divisi: Angiospermae
* Kelas: Dicotyledoneae
* Ordo/Bangsa: Tubiflorae
* Famili/Suku: Solanaceae

Demikian surat keterangan ini dibuat untuk dapat di pergunakan sebagaimana mestinya.

Purwodadi, 13 Desember 1995

[Signature]

Kepala Cabang Balai Kebun Raya Purwodadi,
NOMER

NOMER SURAT PERMINTAAN DETERMINASI TANAMAN DARI FAKULTAS FARMASI UNIVERSITAS KATOLIK WIDYA KANDALA SURABAYA, SAKA BERSAMA INI KAMI KIRIMKAN DETERMINASI TANAMAN TERONG KB UNTUK MAHASISWA FAKULTAS FARMASI UNIVERSITAS KATOLIK WIDYA KANDALA SURABAYA:

NAMA : Arifin Susilo
No. POKOK : 2043088002

KETERANGAN KB
Divisio : Spermatophyta
Subdivisio : Angiospermae
Klas : Dicotyledoneae
Ordo : Rubiflorae
Famil : Solanoceae
Genus : Solanum
Species : Solanum hawsiannum L.

Demikian dan atas kerja samanya tak lupa kami sampaikan terima kasih.

Batu, 21 Mei 1995

[Signature]

[Stamp]
SURAT KETERANGAN IDENTIFIKASI

No.: J47/11.1.06.02/MK/1995

Kepala Cabang Balai Kebun Raya Purwodadi dengan ini menerangkan bahwa material tanaman yang dibawa oleh:

Sdr. Arifin Susilo – Telp. 2443088008

1. **V ar s e**: Solanum
 Jenis: Solanum indicum Linn.

2. **V ar s e**: Solanum
 Jenis: Solanum nigrum L.

3. **V ar s e**: Solanum
 Jenis: Solanum melongena L.

4. **V ar s e**: Solanum
 Jenis: Solanum torvum Swartz

Adapun menurut buku "The Standard Cyclopedia of Horticulture" karangan L.H. Bailey Jilid I (1953) halaman 3 klasifikasinya adalah sebagai berikut:

- **D iv is i**: Spermatophyta
 - **Sub Div isi**: Angiospermae
 - **K el a s**: Dicotyledoneae
 - **Ordo/Famili**: Tubiflorae
 - **Famili/Suku**: Solanaceae

Demikian surat keterangan ini dibuat untuk dapat dijadikan sebagai sumber informasi.

Purwodadi, 43 April 1995

Pimpinan Harian
Balai Kebun Raya Purwodadi,
KEPAADA
TO:

Sdr Arifin Susilo
Wsa. Univ Widya Mandal
SURABAYA

No.K.09.03. 001878

No. 2959/1.27
Nomor pengujian : P. 2759
Number of testing : 9 Januari 1996

SUREBAYA.

Yang bertanda tangan dibawah ini menyatakan bahwa pengujian
The undersigned certifies the testing
dari contoh (contoh) Air laut
dari tgl. 15-12-95

dapat disebutkan bahwa hasil uji yang diterima dari
dapat disebutkan bahwa hasil uji yang diterima dari
dapat disebutkan bahwa hasil uji yang diterima dari

disediakan sebagai berikut:

Zadar garam (NaCl)

% : 3,252

Sudah diterima dari Sdr Arifin Susilo

Wsa. Univ Widya Mandal, Surabaya.