Optimization of water extract of \textit{Cinnamomum burmannii} bark to ascertain its in vitro antidiabetic and antioxidant activities

Martha Ervina\textsuperscript{a,}\textsuperscript{*}, Han Sanjaya Lie\textsuperscript{a}, Jesslyn Diva\textsuperscript{a}, Caroline\textsuperscript{b}, Sundus Tewfik\textsuperscript{c}, Ihab Tewfik\textsuperscript{d}

\textsuperscript{a} Department of Pharmaceutical Biology, Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalsari Selatan 1, Laguna Pakuwon City, Surabaya, 60245, East Java, Indonesia \\
\textsuperscript{b} Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalsari Selatan 1, Laguna Pakuwon City, Surabaya, 60245, East Java, Indonesia \\
\textsuperscript{c} International Forum for Public Health, London, EN4 8EA, United Kingdom \\
\textsuperscript{d} School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, UK, W1W6UW, United Kingdom

\textbf{ARTICLE INFO}

\begin{tabular}{ll}
\textbf{Keywords:} & Optimization  \\
 & Factorial design  \\
 & Water extraction  \\
 & DPPH  \\
 & Diabetes mellitus  \\
 & \textit{Cinnamomum burmannii} \\
\end{tabular}

\textbf{ABSTRACT}

The antidiabetic and antioxidant activity of water extract of \textit{Cinnamomum burmannii} bark is well documented. This research aimed to optimize cinnamon water extraction process and verify active components instigating its in vitro antidiabetic activity. The study employed a Design Expert 7.0 program to derive factorial design and optimization conditions. The extraction step comprised of three factors (temperature, concentration and time of extraction) and two levels (low and high), with four responses observed (yield, total phenolic content, IC\textsubscript{50} DPPH antioxidant activity, and IC\textsubscript{50} α-glucosidase inhibition). The polynomial equations revealed influence and interaction among the selected factors to the responses and obtained overlay optimization of factors to responses. The results indicated that optimal temperature, concentration, and extraction time were 98°C, 30% and 20 min, respectively. Corresponding DPPH, α-glucosidase, TPC, and yield values were 3.45 μg/mL, 0.50 μg/mL, 259.08 μg GAE/mg of sample, 6.28%, respectively. LCMS analysis of the optimum extract confirmed typical characteristic of \textit{C. burmannii} contents (coumarins, polymers of proanthocyanidins A-type and protonated heterodimer of flavan-3-ol group). The optimized water extract of \textit{C. burmannii} has the potency to assist in complementary therapy to modulate diabetes mellitus.

\section{1. Introduction}

World incidence of diabetes mellitus (DM) has shown a dramatic increase over the last decade (ADA, 2018; IDF, 2018). DM is described as the chronic endocrine metabolic disease that characterized by elevated blood glucose level and disturbances of carbohydrate, lipid and protein metabolism. The role of free radicals and oxidative stress has been reported in the pathogenesis of DM; in which it triggers insulin resistance to micro and macro-vascular of DM complications (Khan et al., 2015). While, α-glucosidase and α-amylase inhibition are useful methods for phytochemical screening in managing type 2 DM (DM-2), the phenolics raise the attention in DM-2 therapy among secondary metabolic compounds (Shahidi and Ambigaipalan, 2015). Phenolic hydroxyl groups (PHGs) would scavenge reactive oxygen or nitrogen species and produce more stable radical than the initial form. PHGs may also have an important role in preventing the onset and propagation of DM oxidative disease. The phenolic containing compounds such as flavonoid, tannins, proanthocyanidins, and coumarins were the majority of the natural-occurring antioxidant source (Asif, 2015). In vitro plants based, pre- and clinical trial research has documented phenolic antioxidant as a beneficial supplement in DM management and its complication (Lin et al., 2016).

\textit{Cinnamomum burmannii} (Indonesian Cinnamon, Lauraceae) is a cinnamon species used for daily needs (spice in food) and also as herbs in traditional medicine (Al-Dhuhiab, 2012). In the preclinical study of cinnamon, a reduction of fasting and postprandial plasma glucose and HbA1c has been documented; while its clinical trial on pre-diabetes patients \textit{(with impaired fasting glucose or impaired glucose tolerance)} (Al-Dhuhiab, 2012; Hasanazade et al., 2013; Medagama, 2015). A large amount of bioactive compounds classes were determined by extraction technique such as flavonoid, tannins, proanthocyanidins, and coumarins were the majority of the natural-occurring antioxidant source (Asif, 2015). In vitro plants based, pre- and clinical trial research has documented phenolic antioxidant as a beneficial supplement in DM management and its complication (Lin et al., 2016). In the preclinical study of cinnamon, a reduction of fasting and postprandial plasma glucose and HbA1c has been documented; while its clinical trial on pre-diabetes patients (\textit{with impaired fasting glucose or impaired glucose tolerance}) and pre-treatment HbA1C (Haemoglobin A1C) with aqueous or powder of \textit{C. cassia}, resulted in an improvement in glycemic control (Al-Dhuhiab, 2012; Hasanazade et al., 2013; Medagama, 2015). A large amount of bioactive compounds classes were determined by extraction technique as well as extraction solvent. Adaramola and Onigbinde (2017) reported that the soxhlet extraction of ginger oil with n-hexane resulted in...
higher antioxidant and TPC (total phenolic content) compared to water distilled-solvent extraction or cold maceration. Ingawale et al. (2018) obtained that TPC, antioxidant and α-glucosidase inhibition of Xanthium strumarium L. fruit were optimum on the ultra-sonication extraction with methanol, time and solid to solvent ratio were 60%, 30 min and 1:5, respectively. Previous results on solvents influence reported that DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant of the water extract (infusion) has shown the highest value compare to ethanolic reference rutin (a flavonoid glycoside). The IC50 of water extract (infusion) has shown the highest value compare to ethanolic and reference rutin (a flavonoid glycoside). The IC50 of C. burmannii water extract was 3.03 ± 0.22μg/mL, while ethanolic extract was 8.36 ± 0.73μg/mL and rutin was 15.27 ± 0.69μg/mL (Ervina et al., 2016). Hence, the objectives of this study were to optimize cinnamon water extraction process and verify compounds of instigating its in vitro antidiabetic activity from C. burmannii bark using factorial design.

2. Materials and methods

Factorial design (3 factors and 2 levels) has been used in this optimization process, these included: yield percentage (%), TPC (total phenolic content), IC50 (inhibition concentration DPPH antioxidant activity), IC50αGI (inhibition concentration of α-glucosidase activity) as responses (Dejaeger and Heyden, 2011).

Table 1 demonstrates these factors and levels: Temperature (98 °C (X1) as high and 90 °C as low levels); concentration (30% as high level (+1) and 10% as low level (−1)); time of extraction (20 min and 15 min). The polynomial equation was applied to interpret the results of each parameter-response and establish the optimized condition of water extract.

2.1. Chemicals and reagents

C. burmannii (Cb) dried bark was obtained from local the region (UPT Materia Medica Batu, East Java, Indonesia; ± 875 m above sea levels, with average a temperature of ± 20–25 °C). The sample was then authenticated and deposited in Pharmacognosy and Phytochemistry Laboratory (document number C07-052-15), Faculty of Pharmacy Widya Mandala Catholic University. All solvent and chemicals used were pro-analytical grades. The employed reagents were ethanol, n-hexane, ethyl acetate, formic acid, methanol, toluene (Mallinckrodt Baker, USA); FeCl3, AlCl3, H2SO4, acetic acid anhydrate, phosphate buffer (0.02 m, pH 6.8), aqua demineralization, and sodium tetraborate bismuth substrates, KI and HNO3 (Dragendorff), HgCl2 and KI (Mayer’s), α-naphthol; cinnamaldehyde, rutin, Folin-Ciocalteau (Merck, KGaA, Darmstadt, Germany); gallic acid, α-glucosidase (from S. cerevisiae), p-nitrophenyl-α-D-glucopyranoside (pNPG), acarbose, 2,2-diphenyl-1-picrylhydrazyl (DPPH) (Sigma Aldrich, Germany). These chemicals were purchased from local suppliers.

2.2. Sample preparation

The bark prepared as outlined in Ervina, Nawu & Esar study (2016)

<table>
<thead>
<tr>
<th>Code</th>
<th>Real value</th>
<th>Notation value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T (X1) (°C)</td>
<td>C (X2) (%)</td>
</tr>
<tr>
<td>1</td>
<td>98</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>98</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>98</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>90</td>
<td>15</td>
</tr>
</tbody>
</table>

and the determination of quality parameters was based on national quality standard (IFDA, 2000). The results of sample quality than compared to national herbal pharmacopoeia (IHP, 2012). Phytochemical screening of the extract was detected by using spot reagents test (Trebbe and Evans, 2000).

2.3. Design optimization with factorial design method for extraction

The factorial design method obtained for optimization with 3 factors and 2 levels, that was (98 °C as high level (+1) and 90 °C as low level (−1)); concentration (30% as high level (+1) and 10% as low level (−1)); and extraction time (20 min as high level (+1) and 15 min as low level (−1)). The number of experiments performed was 2^3 = 8 as presented in Table 1. The responses obtained %Yield, DPPH IC50 AA, TPC (% w/w Gallic acid equivalent (GAE), and IC50 of αGI. A polynomial equation: y = B_0 + B_1X_1 + B_2X_2 + B_3X_3 + B_12X_1X_2 + B_13X_1X_3 + B_23X_2X_3 + B_123X_1X_2X_3 will obtain for each response and establish the most factor and or interaction influenced the response most. The collected filtrate was evaporated in a water bath. The final products were investigated of their identity, physical characteristics (color, odor), and water content.

2.4. Determination of total polyphenol content

Folin Ciocalteau (FC) reagent was employed for total phenolic content (TPC) determination of extracts; based on an earlier reported experiment (Stankovic et al., 2011) by mixing thoroughly extracts or gallic acid (0.02 mL), to 10% FC reagents (0.1 mL) and Na2CO3 7.5% (0.08 mL). The mixture was then incubated (for 1 h, at room temperature and in dark conditions), and the absorbance was measured (at 765 nm), using multispan GO Microplate Reader UV/Vis Spectrophotometer. TPC was analyzed by plotting gallic acid calibration curves (12.5–500 μg/mL) and expressed as the percentage of milligram gallic acid equivalent per milligram of dry extract (% w/w GAE/sample). Rutin was used as the reference standard and blank was prepared to correct absorption.

2.5. In vitro antioxidant activity assay

DPPH scavenging method was used to obtain antioxidant activities of the extracts based on Ervina, Nawu, & Esar studied (2016). IC50 is the expression of antioxidant activity and resulted from sample linearity curve of % Inhibition versus sample concentration (% Inhibition = [(AODPPH - ASample)/AODPPH] × 100%). Rutin was used as an antioxidant reference compound and the solvent blank was prepared to correct absorption.

2.6. Determination of α-glucosidase inhibition

The α-glucosidase activity inhibition (αGI) was determined based on Salehi et al. (2013), the method with minor modification. The enzyme used (3 U/mL, 0.02 mL) was resulted from the preliminary test. The αGI was obtained as follow: extract or acarbose was dissolved and diluted with phosphate buffer 67 mM, pH 6.8 at various concentrations (0.13 mL), the enzyme was added then shake (1 min). The mixture was pre-incubated (15 min at 37 °C), following the addition of substrate for the enzyme reaction 5 mM p-nitrophenyl-α-D-glucopyranoside (pNPG) (0.02 mL). The mixture was incubated (15 min at 37 °C) and 0.1 M sodium carbonate (0.08 mL) was added as a stopper of the enzyme reaction. The absorbance was measured at 405 nm, using multispan GO Microplate Reader UV/Vis Spectrophotometer. IC50 (the concentration of the sample required to inhibit 50% of enzyme activity) of the samples and acarbose were obtained from the linearity curve of the % inhibition versus concentration of the sample. The reagent and solvent blanks also observed to correct absorption in the calculation.
2.7. Statistical analysis

All experiments were carried out in triplicates, the results presented as average values and standard deviations. The statistical mean comparison was performed with the SPSS version 24 program (one-way analysis of variance (p values < 0.05); and correlation analysis among dependent factors). Optimization of design analysis used Design-Expert version 7.0 program with the results obtained in the form of polynomials and contour plots.

2.8. Liquid chromatography-mass spectrometry of cinnamon extract

Cinnamon extract was pre-treated with solid phase extraction oasis® HLB Solvents (Waters). The extract was dissolved with methanol and filtered through 0.2μm syringe filter; injected 5μl to the column. The LC system operation conditions: UPLC (Ultra Performance Liquid Chromatography - ACQUITY UPLC®-H-Class system (waters, USA)); C-18 (1.8μm 2.1 × 100 mm) column HSS; temperature: 50 °C (column), 25 °C (room); mobile phase: water + 5 mM ammonium formic (A) and acetonitrile+0.1% formic acid; flow rate: 9.2 mL/min (step gradient) running 23 min. Mass spectrometry system (Xevo G2-S QTof (waters, USA)): ES (Electrospray ionization); mode: positive mode; mass analysis range: 50 – 1300 m/z; source temperature: 100 °C; desolvation gas flow: 350°C; cone gas flow: 0 L/hour; desolvation gas flow: 793L/hour; collision energy: 4 V (low energy); ramp collision energy: 25–50 V (high energy).

3. Results and discussion

Oxidative stress reactions which are triggered by free radicals; are increased in diabetes pathogenesis complications (Penckofer et al., 2001; Rahimi et al., 2005). Cinnamon has been used as a supplement in managing type 2 diabetes therapy; though effectiveness and safety data are needed for long-term trials. Kim et al. (2016) proposed the role of dietary polyphenols in the prevention and modulation of type 2 diabetes. It was supposed improving glucose homeostasis by inhibiting α-amylase and α-glucosidase, sodium-dependent glucose transporter 1 (SLGT1) in the small intestine. The inhibition would reduce digestion and intestinal glucose absorption of dietary carbohydrate. In the muscle and adipocyte, it would stimulate insulin-dependent glucose uptake, activate 51-adenosine-monophosphate protein kinase (AMPK), and modify micro-biome in the large intestine and reduce the inflammation.

Optimization of the process is one of two applications of experimental designs in pharmaceutical sciences. This research was on screening phase in which obtained factors (temperature, concentration and time of extraction) and interaction among factors influenced the response of interest (%yield, TPC, IC50AA, IC50 αGI) (Dejaegher and Heyden, 2011). The quality sample of the dried cinnamon (Table 2) was determined and compared to the standard guidance (IHP, 2012). The results obtained the character and quality of the sample accordance and fulfilled to the cinnamon characteristic (2008). The physicochemical of the extracts were consistent with previous research and added some information data on C. burmannii phytochemical content, which was glycoside, and coumarins content (Ervina et al., 2016; Shahidi and Naczk, 2013). The specific and non-specific parametric result of C. burmannii are macroscopic, microscopic, secondary metabolite content, water content, drying shrinkage, ethanol, and water-soluble content. The phytochemical screening revealed alkaloid, polyphenol, tannin and flavonoids, essential oils, saponins, quinone, triterpenoids, glycosides, and coumarin content of the extracts. Physical appearances of the extracts were from red-brown to brown-black color, have dry consistency, and all have the cinnamon specific odor. The light red color extract might cause little content of phlobatannin (condensed tannin) extractive matter in which observed to all extracts. Though phlobatannin as a polymer of phenolic is insoluble in water, it can be filtered in water filtrate and add to the yield result weigh. The fact that water as the extractive solvent has a disadvantage compared to ethanol in which solubility of carbohydrate and protein occur, and difficulties to remove water from the extracts. On the other hand, water has multi-advantages in cinnamon extraction as it is safer, inexpensive and simpler to perform compared to others solvents (Bele et al., 2010).

The response of the optimization was determined as in Table 4. The equation of response optimization has obtained the influence of each factor and the interaction among them. The yield of the extracts was in a range from 3.22 ± 0.08 to 11.02 ± 0.41%. The lowest was for extract −1, +1, −1 (code 6); while the highest was shown by extract +1, −1, −1 (code 4). Statistical analysis showed a significant difference (p = 0.05 level) to all extracts (extract 1 to 7 and 8), except for extracts 5 to 6. The polynomial equation for the % yield response was $y = 6.274 + 1.539X_1 - 2.027X_2 - 0.059X_3 - 0.586X_1 \times X_2 + 0.055X_1 \times X_3 + 0.390X_2 \times X_3 + 0.202X_1 \times X_2 \times X_3$. This equation established that temperature and interaction among temperature to extraction time and concentration to time extraction give the positive result; while concentration, extraction time and interaction between temperature and concentration revealed negative effect to the % yield. The yield response influenced more by the temperature (1.539) was also found by Jong et al. (2015), who extracted deer antler plants with hot water in hot water extraction of extract yield.

The TPC with FC method obtained of cinnamon extract and rutin with gallic acid equivalent as shown in Table 3. The TPC of extract was ranged from 105.71 ± 18.37 for extract 8 (−1,−1,−1); to 259.08 ± 15.46 μg GAE/mg extract for extract 1 (+1, +1, +1). The statistical analysis of TPC obtained significance difference among all extracts (p = 0.05 significance different level). TPC showed that condition 1 (high temperature, concentration and longer time of extraction) was more efficient in the extraction of polyphenol compounds.

---

**Table 2**

Phytochemical characteristic of the *C. burmannii*.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Microscopic</th>
<th>Chemical screening (reagents test)</th>
<th>Non-specific (content %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>water</td>
<td>total ash</td>
</tr>
<tr>
<td>Rolls bark with a coarse surface</td>
<td>fragments of sclerenchyme fiber</td>
<td>5.43 ± 0.26</td>
<td>4.11 ± 0.98</td>
</tr>
<tr>
<td>10–28 cm, cinnamon typical smell,</td>
<td>oil cells, sclerenchyme and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>red-brown color.</td>
<td>sclerenchyme fibers, calcium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>oxalate crystals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaloid + (Dragendorf &amp; Mayer)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavonoid + (Wiltater’s test)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saponin + (foam test)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tannin + (FeCl₃, salt, gelatin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinone + (KOH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triterpenoid + (Lieberman Burchard test)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycoside + (Molish’s test)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coumarin + (NaOH)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The equation was derived as

$$\text{TPC} = 188.86145 + 29.38359X_1 + 13.781X_2 + 20.489X_3 + 3.736X_1X_2 - 7.224X_1X_3 - 2.981X_2X_3 + 13.029X_1X_2X_3$$

$$\text{Yield} = 6.274 + 1.539X_1 - 2.027X_2 - 0.059X_3 - 0.586 \times 1 + 0.055 \times 1 + 0.390 \times 2 + 0.202X_1X_2$$

$$\text{IC}_{50\alpha GI} = 13.699 - 4.911X_1 - 1.845X_2 - 1.682X_3 - 0.493X_1X_2 - 0.776X_3 - 0.421X_2X_3 - 0.125X_2X_3$$

$$\text{IC}_{50\text{AA}} = 103.35 \pm 1.440\mu g/mL$$

Table 3

<table>
<thead>
<tr>
<th>Experiment (code)</th>
<th>Moisture Content (%)</th>
<th>Yield (%)</th>
<th>TPC (µg GAE/mg sample)</th>
<th>IC_{50\alpha GI} (µg/mL)</th>
<th>DPPH AA α-GI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>4.72 ± 0.97</td>
<td>5.79 ± 0.59</td>
<td>259.08 ± 15.46</td>
<td>3.45 ± 0.04</td>
<td>0.485 ± 0.004</td>
</tr>
<tr>
<td>(2)</td>
<td>5.46 ± 1.19</td>
<td>4.61 ± 0.08</td>
<td>212.45 ± 11.38</td>
<td>9.46 ± 0.52</td>
<td>0.632 ± 0.003</td>
</tr>
<tr>
<td>(3)</td>
<td>6.16 ± 1.41</td>
<td>9.83 ± 0.13</td>
<td>203.95 ± 30.70</td>
<td>9.19 ± 0.13</td>
<td>0.608 ± 0.008</td>
</tr>
<tr>
<td>(4)</td>
<td>4.50 ± 1.53</td>
<td>11.02 ± 0.41</td>
<td>197.51 ± 13.26</td>
<td>13.07 ± 0.15</td>
<td>0.705 ± 0.003</td>
</tr>
<tr>
<td>(5)</td>
<td>6.32 ± 1.15</td>
<td>3.46 ± 0.10</td>
<td>181.23 ± 8.45</td>
<td>15.85 ± 0.18</td>
<td>0.760 ± 0.007</td>
</tr>
<tr>
<td>(6)</td>
<td>5.39 ± 0.59</td>
<td>3.22 ± 0.08</td>
<td>157.82 ± 19.63</td>
<td>18.46 ± 0.09</td>
<td>0.822 ± 0.007</td>
</tr>
<tr>
<td>(7)</td>
<td>5.36 ± 1.19</td>
<td>5.85 ± 0.30</td>
<td>193.16 ± 21.12</td>
<td>19.32 ± 0.29</td>
<td>0.900 ± 0.002</td>
</tr>
<tr>
<td>(8)</td>
<td>4.22 ± 0.97</td>
<td>6.48 ± 0.32</td>
<td>105.71 ± 18.37</td>
<td>20.53 ± 0.30</td>
<td>1.044 ± 0.012</td>
</tr>
</tbody>
</table>

**TPC** = total phenolic content, **GAE** = gallic acid equivalent, **IC_{50\alpha GI}** = inhibition concentration, **DPPH** = 2,2-diphenyl-1-picrylhydrazyl antioxidant activity, **α-GI** = α-glucosidase inhibition, **R** = rutin, **A** = acarbose, different superscriptions in the same column represent for significant difference ($\alpha = 0.05$).

Table 4

<table>
<thead>
<tr>
<th>Response (y)</th>
<th>Equation analysis results for each response.</th>
<th>Equation analysis of components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>$y = 6.274 + 1.539X_1 - 2.027X_2 - 0.059X_3 - 0.586 \times 1 + 0.055 \times 1 + 0.390 \times 2 + 0.202X_1X_2$</td>
<td></td>
</tr>
<tr>
<td>TPC</td>
<td>$y = 188.86145 + 29.38359X_1 + 13.781X_2 + 20.489X_3 + 3.736X_2X_3 - 7.224X_1X_3 - 2.981X_2X_3 + 13.029X_1X_2X_3$</td>
<td></td>
</tr>
<tr>
<td>IC_{50\alpha GI}</td>
<td>$y = 13.699 - 4.911X_1 - 1.845X_2 - 1.682X_3 - 0.493X_1X_2 - 0.776X_3 - 0.421X_2X_3 - 0.125X_2X_3$</td>
<td></td>
</tr>
<tr>
<td>IC_{50AA}</td>
<td>$y = 103.35 \pm 1.440$</td>
<td></td>
</tr>
</tbody>
</table>

$X_1$ = temperature, $X_2$ = concentration, $X_3$ = extraction time.
gallic acid, catechin), vanillic acid, and chlorogenic acid to the antioxidant activity. The research also observed that 80% of acetone extract has the highest alpha-glucosidase inhibitory, while deionized water extract has the highest DPPH scavenge capacity and ferric reducing power. Furthermore, some researchers reported that triterpenoid (Lai et al., 2012), flavonoids (Wang et al., 2010) and flavonols, luteolin, myricetin and quercetin (Tadera et al., 2006) inhibit α-glucosidase.

Fig. 2 portrays contour plot of all optimized factor responses determined (%yield 5–11, TPC 40–50, IC50 AA 3.5–20, and IC50 αGI 0.5–0.7). The yellow area showed the optimum process with the alternative solution to 6.28% of yield, 3.44 μg/mL of IC50 AA, 0.50 μg/mL of IC50 αGI, and TPC 259.08 μg GAE/mg extract; on temperature 98 °C, concentration 30% and 20 min of time extraction, respectively. This theoretical condition pointed to extract number 1 (+1,+1,+1). No significant difference was detected in values between theoretical and factual parameters in the validated equation of result.

LCMS chromatogram of the optimized extract revealed 19 peaks (Fig. 3A). Among these peaks, 11 peaks have a percentage above 1%. Two highest peaks were 57.12% and 12.05% on Rt 11.96 and 15.18 min respectively. Interestingly both peaks showed similar fragments pattern at m/z 621 (Fig. 3B). M/z 620 proposed to be a protonated heterodimer with one monohydroxy-dimethoxylated flavan-3-ol group and one trimethoxylated flavan-3-ol group (Moul et al., 2011). Other specified m/z is 147 (Fig. 3C) in which observed at Rt. 7.7 (1.34%) and 865 at Rt 1.33 (1.62%), and 4.06 (4.61%) (Fig. 3D). These two fragments are characterized by fragments of C. burmannii. Chen, Sun and Ford (2014) found that at m/z 147, 865 are dominant in Cb and differentiate to other Cinnamon species (C. cassia, C. verum, C. laureiroi). The m/z 147 and 865 proposed as coumarins and polymers of A-type proanthocyanidins. Though m/z 865 was observed on its highest abundance, it had m/z 1153.2629 that was identified as A-type tetramers respectively. Another Cinnamon’s specific fragment at m/z 133 (cinnamaldehyde) was not found. The compound might not dissolve in water base extraction sequentially. The type-A proanthocyanidins isolated from Cb were proposed to have insulin-like biological activity (Anderson et al., 2004) thus verifying its capacity to modulate DM-2 in human studies or biological assays.

4. Conclusion

Water extraction of C. burmannii has been optimized with 3 factors (temperature, concentration and time of extraction), 2 levels (high and low) and 4 responses (%yield, TPC, IC50 AA, and IC50 α-GI) by design experiment method. The theoretical optimization equation...
underpinned optimized of extract 1 (98 °C, 30% and 20 min). LCMS analysis of the optimum extract verified the typical characteristic of *C. burmannii* contents which are coumarins, polymers of proanthocyanidins A-type and protonated heterodimer of flavan-3-ol group content. The active components can assist in complementary therapy of DM as they possess antidiabetic activity.

**Conflicts of interest**

All authors declare that there is no conflict of interest.

**Acknowledgments**

We thank Widya Mandala Catholic University Surabaya for Faculty Pharmacy financial support through Faculty of Pharmacy research project (2016); and Institute for Research and Community Services for writing publication program. We also thank DR. Ignatius Srianta for the critical and proofread of this paper.

References


